1
Fork 0
mirror of https://github.com/SapphireServer/Sapphire.git synced 2025-04-27 22:57:45 +00:00

Cleaned up pcb_reader as nav_export

This commit is contained in:
Mordred 2019-02-01 23:27:16 +01:00
parent 7db1d54fcf
commit b29311a36b
21 changed files with 3513 additions and 0 deletions

View file

@ -23,4 +23,5 @@ add_subdirectory( "quest_parser" )
add_subdirectory( "discovery_parser" )
add_subdirectory( "mob_parse" )
add_subdirectory( "pcb_reader" )
add_subdirectory( "nav_export" )
add_subdirectory( "event_object_parser" )

View file

@ -0,0 +1,22 @@
cmake_minimum_required(VERSION 2.6)
cmake_policy(SET CMP0015 NEW)
project(Tool_nav_export)
file(GLOB SERVER_PUBLIC_INCLUDE_FILES "${CMAKE_CURRENT_SOURCE_DIR}/*")
file(GLOB SERVER_SOURCE_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
*.c*
nav/*.c*
nav/ext/*.c*)
add_executable( nav_export ${SERVER_PUBLIC_INCLUDE_FILES} ${SERVER_SOURCE_FILES})
if (UNIX)
target_link_libraries( nav_export common xivdat pthread mysqlclient dl z stdc++fs Recast Detour DetourTileCache )
else()
target_link_libraries( nav_export common xivdat mysql zlib Recast Detour DetourTileCache )
endif()
target_include_directories( nav_export
PUBLIC
"${CMAKE_CURRENT_SOURCE_DIR}/../../deps/" )

View file

@ -0,0 +1,26 @@
collision data exporter for sapphire
compile with STANDALONE defined to compile without boost and sapphire dependencies
usage:
- regular
- compile with root sapphire dir cmakelists
- sapphire/src/tools/bin/pcb_reader2 <territory> "<path/to/game/sqpack/ffxiv>"
- standalone
- compile main.cpp with STANDALONE defined in build arg
- download ffxivexplorer <http://ffxivexplorer.fragmenterworks.com/>
- ffxivexplorer > path/to/ffxiv's/game/sqpack/ffxiv/0a0000.dat
- exd/territorytype.exh > `File > Export` and copy `territorytype.exh.csv` from exproted directory to `pcb_reader.exe` directory
- ffxivexplorer > path/to/ffxiv's/game/sqpack/ffxiv/020000.dat
- ctrl click the following:
- `bg/ffxiv/[REGION]/common/collision`
- `bg/ffxiv/[REGION]/[dun|fld|twn|etc..]/common/collision/`
- `bg/ffxiv/[REGION]/[dun|fld|twn|etc..]/collision/`
- `bg/ffxiv/region/shared/[for_bg|for_hou]/`
- `bg/ffxiv/[REGION]/[dun|fld|twn|etc..]/ZONE/level/`
- `bg/ffxiv/[REGION]/[dun|fld|twn|etc..]/ZONE/collision/`
- `bgcommon/world/sys/shared/for_bg/`
and `File > Export Raw` to pcb_reader exe dir (common and shared files are optional but you will be missing a lot of objects if you skip them)
- note: at this time ffxivexplorer is still missing some hashes, though any tool which can export the exds should work fine
- main "" <territory>

View file

@ -0,0 +1,135 @@
#ifndef CACHE_H
#define CACHE_H
#include <any>
#include <map>
#include <memory>
#include <mutex>
#include <set>
#include "pcb.h"
#include "lgb.h"
#include "sgb.h"
#include <datReader/GameData.h>
#include <datReader/File.h>
#include <datReader/DatCat.h>
class Cache : public std::enable_shared_from_this< Cache >
{
public:
Cache( xiv::dat::GameData* pData )
{
if( !pData )
throw std::runtime_error( "Unable to initialise cache without game data" );
m_pData = pData;
}
~Cache(){}
std::shared_ptr< SGB_FILE > getSgbFile( const std::string& filepath )
{
std::scoped_lock lock( m_mutex );
auto it = m_sgbCache.find( filepath );
if( it != m_sgbCache.end() )
return it->second;
auto pFile = loadFile< SGB_FILE >( filepath );
m_sgbCache[ filepath ] = pFile;
return pFile;
}
std::shared_ptr< LGB_FILE > getLgbFile( const std::string& filepath )
{
std::scoped_lock lock( m_mutex );
auto it = m_lgbCache.find( filepath );
if( it != m_lgbCache.end() )
return it->second;
auto pFile = loadFile< LGB_FILE >( filepath );
m_lgbCache[ filepath ] = pFile;
return pFile;
}
std::shared_ptr< PCB_FILE > getPcbFile( const std::string& filepath )
{
std::scoped_lock lock( m_mutex );
auto it = m_pcbCache.find( filepath );
if( it != m_pcbCache.end() )
return it->second;
auto pFile = loadFile< PCB_FILE >( filepath );
m_pcbCache[ filepath ] = pFile;
return pFile;
}
void purge()
{
std::scoped_lock lock( m_mutex );
_purge();
}
private:
void _purge()
{
m_lgbCache.clear();
m_sgbCache.clear();
m_pcbCache.clear();
//std::cout << "Purged PCB/SGB/LGB cache \n";
}
template< typename T >
std::shared_ptr< T > loadFile( const std::string& filepath )
{
auto buf = getFileBuffer( filepath );
if( !buf.empty() )
{
try
{
auto pFile = std::make_shared< T >( &buf[0] );
m_totalFiles++;
if( m_totalFiles % 1000 == 0 )
{
_purge();
m_totalFiles = 1;
}
return pFile;
}
catch( std::exception& e )
{
std::string err( filepath + " " + e.what() );
std::cout << err << std::endl;
}
}
return nullptr;
}
std::vector< char > getFileBuffer( const std::string& filepath )
{
try
{
//std::cout << fileName << " \n";
auto pFile = m_pData->getFile( filepath );
auto& sections = pFile->get_data_sections();
auto& section = sections.at( 0 );
return section;
}
catch( std::exception& e )
{
std::vector< char > empty;
return empty;
}
}
std::mutex m_mutex;
xiv::dat::GameData* m_pData;
std::map< std::string, std::shared_ptr< LGB_FILE > > m_lgbCache;
std::map< std::string, std::shared_ptr< SGB_FILE > > m_sgbCache;
std::map< std::string, std::shared_ptr< PCB_FILE > > m_pcbCache;
int m_totalFiles{0};
};
#endif

View file

@ -0,0 +1,55 @@
#ifndef EXPORTER_H
#define EXPORTER_H
#include <atomic>
#include <future>
#include <mutex>
#include <thread>
#include <condition_variable>
#include <fstream>
#include <map>
#include <set>
#include <string>
#include <vector>
#include "threadpool.h"
enum ExportFileType : int
{
WavefrontObj = 0x01,
Navmesh = 0x02,
};
enum ExportSplitType
{
None,
SplitByGroup,
SingleZone
};
struct ExportedMesh
{
std::vector< float > verts;
std::vector< int > indices;
};
struct ExportedModel
{
std::string name;
std::vector< ExportedMesh > meshes;
};
struct ExportedGroup
{
std::string name;
std::map< std::string, ExportedModel > models;
};
struct ExportedZone
{
std::string name;
std::map< std::string, ExportedGroup > groups;
};
#endif

View file

@ -0,0 +1,51 @@
#ifndef EXPORTMGR_H
#define EXPORTMGR_H
#include "exporter.h"
#include "navmesh_exporter.h"
#include "obj_exporter.h"
#include "threadpool.h"
class ExportMgr
{
public:
ExportMgr( unsigned int maxJobs = 0 )
{
m_threadpool.addWorkers( maxJobs );
}
~ExportMgr()
{
waitForTasks();
}
void restart( bool cancel = false, unsigned int maxJobs = 0 )
{
if( cancel )
m_threadpool.cancel();
m_threadpool.complete();
m_threadpool.addWorkers( maxJobs );
}
void exportZone(const ExportedZone& zone, ExportFileType exportFileTypes)
{
m_threadpool.queue( [zone, exportFileTypes]()
{
if( exportFileTypes & ExportFileType::WavefrontObj )
ObjExporter::exportZone( zone );
if( exportFileTypes & ExportFileType::Navmesh )
NavmeshExporter::exportZone( zone );
} );
}
void waitForTasks()
{
m_threadpool.complete();
}
private:
ThreadPool m_threadpool;
};
#endif

389
src/tools/nav_export/lgb.h Normal file
View file

@ -0,0 +1,389 @@
#ifndef _LGB_H
#define _LGB_H
#include <cstring>
#include <memory>
#include <cstdint>
#include <iostream>
#include <vector>
#include <map>
#include <string>
#include <iostream>
#include <sstream>
#include <iomanip>
#include "matrix4.h"
#include "vec3.h"
#include "sgb.h"
// garbage to skip model loading
extern bool noObj;
// all credit to
// https://github.com/ufx/SaintCoinach/blob/master/SaintCoinach/Graphics/Lgb/
// this is simply their work ported to c++ since we dont c#
struct LGB_FILE;
struct LGB_FILE_HEADER;
struct LGB_GROUP;
struct LGB_GROUP_HEADER;
enum class LgbEntryType :
uint32_t
{
BgParts = 1,
Light = 3,
Vfx = 4,
PositionMarker = 5,
Gimmick = 6,
SharedGroup6 = 6,// secondary variable is set to 2
Sound = 7,
EventNpc = 8,
BattleNpc = 9,
Aetheryte = 12,
EnvSpace = 13,
Gathering = 14,
SharedGroup15 = 15,// secondary variable is set to 13
Treasure = 16,
Weapon = 39,
PopRange = 40,
ExitRange = 41,
MapRange = 43,
NaviMeshRange = 44,
EventObject = 45,
EnvLocation = 47,
EventRange = 49,
QuestMarker = 51,
CollisionBox = 57,
DoorRange = 58,
LineVfx = 59,
ClientPath = 65,
ServerPath = 66,
GimmickRange = 67,
TargetMarker = 68,
ChairMarker = 69,
ClickableRange = 70,
PrefetchRange = 71,
FateRange = 72,
SphereCastRange = 75,
};
struct LGB_ENTRY_HEADER
{
LgbEntryType type;
uint32_t unknown;
uint32_t nameOffset;
vec3 translation;
vec3 rotation;
vec3 scale;
};
class LGB_ENTRY
{
public:
char* m_buf;
uint32_t m_offset;
LGB_ENTRY_HEADER header;
LGB_ENTRY()
{
m_buf = nullptr;
m_offset = 0;
memset( &header, 0, sizeof( header ) );
};
LGB_ENTRY( char* buf, uint32_t offset )
{
m_buf = buf;
m_offset = offset;
header = *reinterpret_cast< LGB_ENTRY_HEADER* >( buf + offset );
};
const LgbEntryType getType() const
{
return header.type;
};
virtual ~LGB_ENTRY()
{
};
};
struct LGB_BGPARTS_HEADER :
public LGB_ENTRY_HEADER
{
uint32_t modelFileOffset;
uint32_t collisionFileOffset;
uint32_t unknown4;
uint32_t unknown5;
uint32_t unknown6;
uint32_t unknown7;
uint32_t unknown8;
uint32_t unknown9;
};
class LGB_BGPARTS_ENTRY :
public LGB_ENTRY
{
public:
LGB_BGPARTS_HEADER header;
std::string name;
std::string modelFileName;
std::string collisionFileName;
LGB_BGPARTS_ENTRY()
{
};
LGB_BGPARTS_ENTRY( char* buf, uint32_t offset ) :
LGB_ENTRY( buf, offset )
{
header = *reinterpret_cast<LGB_BGPARTS_HEADER*>( buf + offset );
name = std::string( buf + offset + header.nameOffset );
modelFileName = std::string( buf + offset + header.modelFileOffset );
collisionFileName = std::string( buf + offset + header.collisionFileOffset );
};
};
struct LGB_GIMMICK_HEADER :
public LGB_ENTRY_HEADER
{
uint32_t gimmickFileOffset;
char unknownBytes[100];
};
class LGB_GIMMICK_ENTRY :
public LGB_ENTRY
{
public:
LGB_GIMMICK_HEADER header;
std::string name;
std::string gimmickFileName;
LGB_GIMMICK_ENTRY( char* buf, uint32_t offset ) :
LGB_ENTRY( buf, offset )
{
header = *reinterpret_cast<LGB_GIMMICK_HEADER*>( buf + offset );
name = std::string( buf + offset + header.nameOffset );
gimmickFileName = std::string( buf + offset + header.gimmickFileOffset );
//std::cout << "\t " << gimmickFileName << " unknown: " << header.unknown << "\n";
};
};
struct LGB_ENPC_HEADER :
public LGB_ENTRY_HEADER
{
uint32_t enpcId;
uint8_t unknown1[0x24];
};
class LGB_ENPC_ENTRY :
public LGB_ENTRY
{
public:
LGB_ENPC_HEADER header;
std::string name;
LGB_ENPC_ENTRY( char* buf, uint32_t offset ) :
LGB_ENTRY( buf, offset )
{
header = *reinterpret_cast< LGB_ENPC_HEADER* >( buf + offset );
name = std::string( buf + offset + header.nameOffset );
//std::cout << "\t ENpc " << header.enpcId << " " << name << "\n";
};
};
struct LGB_EOBJ_HEADER :
public LGB_ENTRY_HEADER
{
uint32_t eobjId;
uint32_t levelHierachyId;
uint8_t unknown1[0xC];
};
class LGB_EOBJ_ENTRY :
public LGB_ENTRY
{
public:
LGB_EOBJ_HEADER header;
std::string name;
LGB_EOBJ_ENTRY( char* buf, uint32_t offset ) :
LGB_ENTRY( buf, offset )
{
header = *reinterpret_cast< LGB_EOBJ_HEADER* >( buf + offset );
//std::cout << "\t " << header.eobjId << " " << name << " unknown: " << header.unknown << "\n";
name = std::string( buf + offset + header.nameOffset );
};
};
struct LGB_MAPRANGE_HEADER :
public LGB_ENTRY_HEADER
{
uint32_t type;
uint16_t unknown2;
uint16_t unknown3;
uint8_t unknown4[0x10];
};
struct LGB_MAPRANGE_ENTRY :
public LGB_ENTRY
{
public:
LGB_MAPRANGE_HEADER header;
std::string name;
LGB_MAPRANGE_ENTRY( char* buf, uint32_t offset ) :
LGB_ENTRY( buf, offset )
{
header = *reinterpret_cast< LGB_MAPRANGE_HEADER* >( buf + offset );
name = std::string( buf + offset + header.nameOffset );
};
};
struct LGB_COLLISION_BOX_HEADER :
public LGB_ENTRY_HEADER
{
uint8_t unk[100];
};
struct LGB_COLLISION_BOX_ENTRY :
public LGB_ENTRY
{
LGB_COLLISION_BOX_HEADER header;
std::string name;
LGB_COLLISION_BOX_ENTRY( char* buf, uint32_t offset ) :
LGB_ENTRY( buf, offset )
{
header = *reinterpret_cast< LGB_COLLISION_BOX_HEADER* >( buf + offset );
header.type = LgbEntryType::CollisionBox;
name = std::string( buf + offset + header.nameOffset );
std::stringstream ss;
ss << "\nName: " << name << "Id: " << header.unknown << "\n";
ss << "Pos: " << header.translation.x << " " << header.translation.y << " " << header.translation.z << "\n";
ss << "Rot?: " << header.rotation.x << " " << header.rotation.y << " " << header.rotation.z << "\n";
ss << "Scale?: " << header.scale.x << " " << header.scale.y << " " << header.scale.z << "\n";
ss << "00 01 02 03 04 05 06 07 | 08 09 0A 0B 0C 0D 0E 0F\n";
ss << "-------------------------------------------------\n";
ss << std::hex;
ss << std::setw( 2 );
ss << std::setfill( '0' );
for( auto i = 1; i < sizeof( header.unk ); ++i )
if( i % 16 == 0 )
ss << std::setw(2) << (int)header.unk[i - 1] << "\n";
else if( i % 8 == 0 )
ss << std::setw(2) << (int)header.unk[i - 1] << " | ";
else
ss << std::setw(2) << (int)header.unk[i - 1] << " ";
ss << "\n";
std::cout << ss.str();
}
};
struct LGB_GROUP_HEADER
{
uint32_t unknown;
int32_t groupNameOffset;
int32_t entriesOffset;
int32_t entryCount;
uint32_t unknown2;
uint32_t unknown3;
uint32_t unknown4;
uint32_t unknown5;
uint32_t unknown6;
uint32_t unknown7;
uint32_t unknown8;
uint32_t unknown9;
uint32_t unknown10;
};
struct LGB_GROUP
{
LGB_FILE* parent;
LGB_GROUP_HEADER header;
std::string name;
std::vector< std::shared_ptr< LGB_ENTRY > > entries;
LGB_GROUP( char* buf, LGB_FILE* parentStruct, uint32_t offset )
{
parent = parentStruct;
header = *reinterpret_cast< LGB_GROUP_HEADER* >( buf + offset );
name = std::string( buf + offset + header.groupNameOffset );
//entries.resize( header.entryCount );
//std::cout << name << "\n\t unknown: " << header.unknown << "\n";
const auto entriesOffset = offset + header.entriesOffset;
for( auto i = 0; i < header.entryCount; ++i )
{
const auto entryOffset = entriesOffset + *reinterpret_cast< int32_t* >( buf + ( entriesOffset + i * 4 ) );
try
{
const auto type = *reinterpret_cast<LgbEntryType*>( buf + entryOffset );
// garbage to skip model loading
switch( type )
{
case LgbEntryType::BgParts:
entries.push_back( std::make_shared< LGB_BGPARTS_ENTRY >( buf, entryOffset ) );
break;
case LgbEntryType::Gimmick:
entries.push_back( std::make_shared< LGB_GIMMICK_ENTRY >( buf, entryOffset ) );
break;
case LgbEntryType::EventObject:
entries.push_back( std::make_shared< LGB_EOBJ_ENTRY >( buf, entryOffset ) );
break;
case LgbEntryType::CollisionBox:
//entries.push_back( std::make_shared< LGB_COLLISION_BOX_ENTRY >( buf, entryOffset ) );
break;
default:
//std::cout << "\t\tUnknown SGB entry! Group: " << name << " type: " << ( int )type << " index: " << i << " entryOffset: " << entryOffset << "\n";
break;
}
}
catch( std::exception& e )
{
std::cout << ( name + " " + e.what() + "\n" );
}
}
};
};
struct LGB_FILE_HEADER
{
char magic[4]; // LGB 1
uint32_t fileSize;
uint32_t unknown;
char magic2[4]; // LGP1
uint32_t unknown2;
uint32_t unknown3;
uint32_t unknown4;
uint32_t unknown5;
int32_t groupCount;
};
struct LGB_FILE
{
LGB_FILE_HEADER header;
std::vector< LGB_GROUP > groups;
LGB_FILE( char* buf )
{
header = *reinterpret_cast< LGB_FILE_HEADER* >( buf );
if( strncmp( &header.magic[ 0 ], "LGB1", 4 ) != 0 || strncmp( &header.magic2[ 0 ], "LGP1", 4 ) != 0 )
throw std::runtime_error( "Invalid LGB file!" );
//groups.resize(header.groupCount);
constexpr auto baseOffset = sizeof( header );
for( auto i = 0; i < header.groupCount; ++i )
{
const auto groupOffset = baseOffset + *reinterpret_cast< int32_t* >( buf + ( baseOffset + i * 4 ) );
const auto group = LGB_GROUP( buf, this, groupOffset );
groups.push_back( group );
}
};
};
#endif

View file

@ -0,0 +1,503 @@
#include <stdio.h>
#include <cstdint>
#include <string>
#include <iostream>
#include <chrono>
#include <fstream>
#include <regex>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <thread>
#include <variant>
#include <Util/Util.h>
#include "exporter.h"
#include "exportmgr.h"
#include "cache.h"
#include "pcb.h"
#include "lgb.h"
#include "sgb.h"
#include <GameData.h>
#include <File.h>
#include <DatCat.h>
#include <ExdData.h>
#include <ExdCat.h>
#include <Exd.h>
// garbage to ignore models
bool noObj = false;
std::string gamePath( "C:\\SquareEnix\\FINAL FANTASY XIV - A Realm Reborn\\game\\sqpack" );
std::unordered_map< uint16_t, std::string > zoneNameMap;
std::map< std::string, std::string > exportedTeriMap;
uint32_t zoneId;
std::set< std::string > zoneDumpList;
std::shared_ptr< Cache > pCache;
std::map< uint32_t, uint16_t > eobjSgbPaths;
xiv::dat::GameData* data1 = nullptr;
xiv::exd::ExdData* eData = nullptr;
enum class TerritoryTypeExdIndexes :
size_t
{
TerritoryType = 0,
Path = 1
};
using namespace std::chrono_literals;
void initExd( const std::string& gamePath )
{
data1 = data1 ? data1 : new xiv::dat::GameData( gamePath );
eData = eData ? eData : new xiv::exd::ExdData( *data1 );
pCache = std::make_shared< Cache >( data1 );
}
void replaceAll( std::string& str, const std::string& from, const std::string& to ) {
if( from.empty() )
return;
size_t start_pos = 0;
while( ( start_pos = str.find( from, start_pos ) ) != std::string::npos ) {
str.replace( start_pos, from.length(), to );
start_pos += to.length(); // In case 'to' contains 'from', like replacing 'x' with 'yx'
}
}
std::string getEobjSgbPath( uint32_t eobjId )
{
static std::map< uint16_t, std::string > exportedSgMap;
if( !exportedSgMap.empty() )
return exportedSgMap[ eobjSgbPaths[ eobjId ] ];
auto& eobjCat = eData->get_category( "EObj" );
auto eObjExd = static_cast< xiv::exd::Exd >( eobjCat.get_data_ln( xiv::exd::Language::none ) );
auto& exportedSgCat = eData->get_category( "ExportedSG" );
auto exportedSgExd = static_cast< xiv::exd::Exd >( exportedSgCat.get_data_ln( xiv::exd::Language::none ) );
for( auto& row : exportedSgExd.get_rows() )
{
auto id = row.first;
auto& fields = row.second;
auto path = std::get< std::string >( fields.at( 0 ) );
exportedSgMap[id] = path;
}
uint16_t exportedSgId{0};
for( auto& row : eObjExd.get_rows() )
{
auto id = row.first;
auto& fields = row.second;
eobjSgbPaths[id] = std::get< uint16_t >( fields.at( 11 ) );
}
return exportedSgMap[exportedSgId];
}
std::string zoneNameToPath( const std::string& name )
{
std::string path;
bool found = false;
auto& cat = eData->get_category( "TerritoryType" );
auto exd = static_cast< xiv::exd::Exd >( cat.get_data_ln( xiv::exd::Language::none ) );
for( auto& row : exd.get_rows() )
{
auto& fields = row.second;
auto teriName = std::get< std::string >(
fields.at( static_cast< size_t >( TerritoryTypeExdIndexes::TerritoryType ) ) );
if( teriName.empty() )
continue;
auto teriPath = std::get< std::string >( fields.at( static_cast< size_t >( TerritoryTypeExdIndexes::Path ) ) );
if( !found && ( Sapphire::Util::toLowerCopy( name ) == Sapphire::Util::toLowerCopy( teriName ) ) )
{
path = teriPath;
found = true;
zoneId = row.first;
}
zoneNameMap[ row.first ] = teriName;
}
if( found )
{
//path = path.substr( path.find_first_of( "/" ) + 1, path.size() - path.find_first_of( "/" ));
//path = std::string( "ffxiv/" ) + path;
path = std::string( "bg/" ) + path.substr( 0, path.find( "/level/" ) );
printf( "[Info] Found path for %s\n", name.c_str() );
}
else
{
throw std::runtime_error( "Unable to find path for " + name +
".\n\tPlease double check spelling." );
}
return path;
}
int totalModels = 0;
void buildModelEntry( std::shared_ptr< PCB_FILE > pPcbFile, ExportedGroup& exportedGroup,
const std::string& name, const std::string& groupName,
const vec3* scale = nullptr,
const vec3* rotation = nullptr,
const vec3* translation = nullptr,
const SGB_MODEL_ENTRY* pSgbEntry = nullptr )
{
auto& pcb_file = *pPcbFile.get();
ExportedModel model;
model.name = name + "_" + std::to_string( totalModels++ );
model.meshes.resize( pcb_file.entries.size() );
uint32_t meshCount = 0;
for( const auto& entry : pcb_file.entries )
{
ExportedMesh mesh;
mesh.verts.resize( ( entry.header.num_vertices + entry.header.num_v16 ) * 3 );
mesh.indices.resize( entry.header.num_indices * 3 );
float x_base = abs( float( entry.header.x1 - entry.header.x ) );
float y_base = abs( float( entry.header.y1 - entry.header.y ) );
float z_base = abs( float( entry.header.z1 - entry.header.z ) );
auto makeTranslation = [ & ]( vec3& v )
{
if( pSgbEntry )
{
v.x *= pSgbEntry->header.scale.x;
v.y *= pSgbEntry->header.scale.y;
v.z *= pSgbEntry->header.scale.z;
v = v * matrix4::rotateX( pSgbEntry->header.rotation.x );
v = v * matrix4::rotateY( pSgbEntry->header.rotation.y );
v = v * matrix4::rotateZ( pSgbEntry->header.rotation.z );
v.x += pSgbEntry->header.translation.x;
v.y += pSgbEntry->header.translation.y;
v.z += pSgbEntry->header.translation.z;
}
if( scale )
{
v.x *= scale->x;
v.y *= scale->y;
v.z *= scale->z;
v = v * matrix4::rotateX( rotation->x );
v = v * matrix4::rotateY( rotation->y );
v = v * matrix4::rotateZ( rotation->z );
v.x += translation->x;
v.y += translation->y;
v.z += translation->z;
}
};
int verts = 0;
int indices = 0;
for( auto& vertex : entry.data.vertices )
{
vec3 v( vertex.x, vertex.y, vertex.z );
makeTranslation( v );
mesh.verts[ verts++ ] = v.x;
mesh.verts[ verts++ ] = v.y;
mesh.verts[ verts++ ] = v.z;
}
for( const auto& link : entry.data.vertices_i16 )
{
vec3 v( float( link.x ) / 0xFFFF, float( link.y ) / 0xFFFF, float( link.z ) / 0xFFFF );
v.x = v.x * x_base + entry.header.x;
v.y = v.y * y_base + entry.header.y;
v.z = v.z * z_base + entry.header.z;
makeTranslation( v );
mesh.verts[ verts++ ] = v.x;
mesh.verts[ verts++ ] = v.y;
mesh.verts[ verts++ ] = v.z;
}
for( const auto& index : entry.data.indices )
{
mesh.indices[ indices++ ] = index.index[ 0 ];
mesh.indices[ indices++ ] = index.index[ 1 ];
mesh.indices[ indices++ ] = index.index[ 2 ];
// std::cout << std::to_string( index.unknown[0] )<< " " << std::to_string( index.unknown[1] )<< " " << std::to_string( index.unknown[2]) << std::endl;
}
model.meshes[ meshCount++ ] = mesh;
}
exportedGroup.models[model.name] = model;
}
bool pcbTransformModel( const std::string& fileName, const vec3* scale, const vec3* rotation,
const vec3* translation, ExportedGroup& exportgroup, const SGB_MODEL_ENTRY* pModel = nullptr )
{
if( auto pPcbFile = pCache->getPcbFile( fileName ) )
{
buildModelEntry( pPcbFile, exportgroup, fileName, exportgroup.name, scale, rotation, translation, pModel );
}
return true;
};
void exportSgbModel( const std::string& sgbFilePath, LGB_ENTRY* pGimmick, ExportedGroup& exportgroup, bool isEobj = false )
{
if( auto pSgbFile = pCache->getSgbFile( sgbFilePath ) )
{
const auto& sgbFile = *pSgbFile;
for( const auto& group : sgbFile.entries )
{
for( const auto& pSgbEntry : group.entries )
{
auto pModel = dynamic_cast< SGB_MODEL_ENTRY* >( pSgbEntry.get() );
std::string fileName = pModel->collisionFileName;
if( pModel->type == SgbGroupEntryType::Gimmick )
{
if( auto pSubSgbFile = pCache->getSgbFile( pModel->modelFileName ) )
{
for( const auto& subGroup : pSubSgbFile->entries )
{
for( const auto& pSubEntry : subGroup.entries )
{
auto pSubModel = dynamic_cast< SGB_MODEL_ENTRY* >( pSubEntry.get() );
std::string subModelFile = pSubModel->modelFileName;
//"bg/ex1/02_dra_d2/alx/common/bgparts/d2a0_a7_btog2.mdl"
//"bg/ex1/02_dra_d2/alx/common/collision/d2a0_a1_twl01.pcb"
replaceAll( subModelFile, "/bgparts/", "/collision/" );
replaceAll( subModelFile, ".mdl", ".pcb ");
if( pSubModel && pSubModel->type == SgbGroupEntryType::Model )
pcbTransformModel( subModelFile, &pGimmick->header.scale, &pGimmick->header.rotation,
&pGimmick->header.translation, exportgroup, pSubModel );
}
}
}
}
pcbTransformModel( fileName, &pGimmick->header.scale, &pGimmick->header.rotation,
&pGimmick->header.translation, exportgroup, pModel );
}
}
}
};
int main( int argc, char* argv[] )
{
auto startTime = std::chrono::high_resolution_clock::now();
auto entryStartTime = std::chrono::high_resolution_clock::now();
std::vector< std::string > argVec( argv + 1, argv + argc );
std::string zoneName = "r2t2";
bool generateNavmesh = true;
bool dumpAllZones = true;
int nJobs = 4;
int exportFileType = 0;
if( !noObj )
exportFileType |= ExportFileType::WavefrontObj;
if( generateNavmesh )
exportFileType |= ExportFileType::Navmesh;
try
{
initExd( gamePath );
getEobjSgbPath( 0 );
}
catch( std::exception& e )
{
printf( "Unable to initialise EXD!\n Usage: pcb_reader <teri> \"path/to/FINAL FANTASY XIV - A REALM REBORN/game/sqpack\"\n" );
return -1;
}
ExportMgr exportMgr( nJobs );
zoneNameToPath( zoneName );
if( dumpAllZones )
{
for( const auto& zone : zoneNameMap )
zoneDumpList.emplace( zone.second );
}
else
{
zoneDumpList.emplace( zoneName );
}
int zoneCount = 0;
for( auto& zoneName : zoneDumpList )
{
try
{
const auto& zonePath = zoneNameToPath( zoneName );
if( exportedTeriMap.find( zonePath ) != exportedTeriMap.end() )
continue;
std::string zoneNameShort = zonePath.substr( zonePath.find_last_of( '/' ) );
ExportedZone exportedZone;
exportedZone.name = zoneNameShort;
exportedTeriMap[ zonePath ] = zoneNameShort;
std::string listPcbPath( zonePath + "/collision/list.pcb" );
std::string bgLgbPath( zonePath + "/level/bg.lgb" );
std::string planmapLgbPath( zonePath + "/level/planmap.lgb" );
std::string collisionFilePath( zonePath + "/collision/" );
std::vector< char > section;
std::vector< char > section1;
std::vector< char > section2;
const xiv::dat::Cat& test = data1->getCategory( "bg" );
auto test_file = data1->getFile( bgLgbPath );
section = test_file->access_data_sections().at( 0 );
auto planmap_file = data1->getFile( planmapLgbPath );
section2 = planmap_file->access_data_sections().at( 0 );
auto test_file1 = data1->getFile( listPcbPath );
section1 = test_file1->access_data_sections().at( 0 );
std::vector< std::string > stringList;
int totalGroups = 0;
int totalEntries = 0;
uint32_t offset1 = 0x20;
{
for( ;; )
{
if( offset1 >= section1.size() )
{
break;
}
uint16_t trId = *( uint16_t* ) &section1[ offset1 ];
char someString[200];
sprintf( someString, "%str%04d.pcb", collisionFilePath.c_str(), trId );
stringList.push_back( std::string( someString ) );
//std::cout << someString << "\n";
offset1 += 0x20;
}
}
LGB_FILE bgLgb( &section[ 0 ] );
LGB_FILE planmapLgb( &section2[ 0 ] );
std::vector< LGB_FILE > lgbList{ bgLgb, planmapLgb };
ExportedGroup exportedTerrainGroup;
exportedTerrainGroup.name = zoneName + "_terrain";
for( const auto& fileName : stringList )
{
if( auto pPcbFile = pCache->getPcbFile( fileName ) )
buildModelEntry( pPcbFile, exportedTerrainGroup, fileName, zoneNameShort );
}
exportedZone.groups.emplace( exportedTerrainGroup.name, exportedTerrainGroup );
for( const auto& lgb : lgbList )
{
for( const auto& group : lgb.groups )
{
ExportedGroup exportedGroup;
exportedGroup.name = group.name;
//std::cout << "\t" << group.name << " Size " << group.header.entryCount << "\n";
for( const auto& pEntry : group.entries )
{
std::string fileName( "" );
fileName.resize( 256 );
// write files
switch( pEntry->getType() )
{
case LgbEntryType::BgParts:
{
auto pBgParts = static_cast< LGB_BGPARTS_ENTRY* >( pEntry.get() );
fileName = pBgParts->collisionFileName;
pcbTransformModel( fileName, &pBgParts->header.scale, &pBgParts->header.rotation,
&pBgParts->header.translation, exportedGroup );
}
break;
// gimmick entry
case LgbEntryType::Gimmick:
{
auto pGimmick = static_cast< LGB_GIMMICK_ENTRY* >( pEntry.get() );
exportSgbModel( pGimmick->gimmickFileName, pGimmick, exportedGroup );
}
break;
case LgbEntryType::EventObject:
{
auto pEobj = static_cast< LGB_EOBJ_ENTRY* >( pEntry.get() );
pcbTransformModel( fileName, &pEntry->header.scale, &pEntry->header.rotation, &pEntry->header.translation, exportedGroup );
auto sgbPath = getEobjSgbPath( pEobj->header.eobjId );
if ( !sgbPath.empty() )
{
exportSgbModel( sgbPath, pEobj, exportedGroup, true );
if( auto pGimmick = pCache->getSgbFile( sgbPath ) )
{
for( const auto& offset1cFile : pGimmick->offset1cObjects )
exportSgbModel( offset1cFile, pEobj, exportedGroup, true );
}
}
}
break;
default:
break;
}
}
exportedZone.groups.emplace( group.name, exportedGroup );
}
}
exportMgr.exportZone( exportedZone, static_cast< ExportFileType >( exportFileType ) );
exportedZone.groups.clear();
printf( "Built export struct for %s in %lu seconds \n",
zoneName.c_str(),
std::chrono::duration_cast< std::chrono::seconds >( std::chrono::high_resolution_clock::now() - entryStartTime ).count() );
//if( zoneCount++ % nJobs == 0 )
{
exportMgr.restart();
pCache->purge();
}
}
catch( std::exception& e )
{
printf( "%s", ( std::string( e.what() ) + "\n" ).c_str() );
printf( "Unable to extract collision data.\n" );
printf( "Usage: pcb_reader2 territory \"path/to/game/sqpack/ffxiv\"\n" );
}
}
pCache->purge();
exportMgr.waitForTasks();
std::cout << "\n\n\n";
printf( "Finished all tasks in %lu seconds\n",
std::chrono::duration_cast< std::chrono::seconds >( std::chrono::high_resolution_clock::now() - startTime ).count() );
delete eData;
delete data1;
return 0;
}

View file

@ -0,0 +1,111 @@
#ifndef _MATRIX4_H
#define _MATRIX4_H
#include <cstdint>
#include <cmath>
// https://github.com/jpd002/Play--Framework/tree/master/include/math
struct matrix4
{
// 4x4
float grid[16];
matrix4()
{
memset( &grid[ 0 ], 0, sizeof( grid ) );
}
float operator()( int row, int col ) const
{
return grid[ ( row * 4 ) + col ];
}
float& operator()( int row, int col )
{
return grid[ ( row * 4 ) + col ];
}
static matrix4 rotateX( float angle )
{
matrix4 ret = matrix4();
ret( 0, 0 ) = 1.000000000f;
ret( 1, 1 ) = cos( angle );
ret( 1, 2 ) = -sin( angle );
ret( 2, 1 ) = sin( angle );
ret( 2, 2 ) = cos( angle );
ret( 3, 3 ) = 1.000000000f;
return ret;
}
static matrix4 rotateY( float angle )
{
matrix4 ret = matrix4();
ret( 0, 0 ) = cos( angle );
ret( 0, 2 ) = sin( angle );
ret( 1, 1 ) = 1.000000000f;
ret( 2, 0 ) = -sin( angle );
ret( 2, 2 ) = cos( angle );
ret( 3, 3 ) = 1.000000000f;
return ret;
}
static matrix4 rotateZ( float angle )
{
matrix4 ret = matrix4();
ret( 0, 0 ) = cos( angle );
ret( 0, 1 ) = -sin( angle );
ret( 1, 0 ) = sin( angle );
ret( 1, 1 ) = cos( angle );
ret( 2, 2 ) = 1.000000000f;
ret( 3, 3 ) = 1.000000000f;
return ret;
}
static matrix4 scale( float x, float y, float z )
{
matrix4 ret = matrix4();
ret( 0, 0 ) = x;
ret( 1, 1 ) = y;
ret( 2, 2 ) = z;
ret( 3, 3 ) = 1;
return ret;
}
static matrix4 translate( float x, float y, float z )
{
matrix4 ret = matrix4();
ret( 0, 0 ) = 1;
ret( 1, 1 ) = 1;
ret( 2, 2 ) = 1;
ret( 3, 3 ) = 1;
ret( 3, 0 ) = x;
ret( 3, 1 ) = y;
ret( 3, 2 ) = z;
return ret;
}
matrix4 operator*( const matrix4& rhs ) const
{
matrix4 ret;
for( unsigned int i = 0; i < 4; i++ )
{
ret( i, 0 ) =
( *this )( i, 0 ) * rhs( 0, 0 ) + ( *this )( i, 1 ) * rhs( 1, 0 ) + ( *this )( i, 2 ) * rhs( 2, 0 ) +
( *this )( i, 3 ) * rhs( 3, 0 );
ret( i, 1 ) =
( *this )( i, 0 ) * rhs( 0, 1 ) + ( *this )( i, 1 ) * rhs( 1, 1 ) + ( *this )( i, 2 ) * rhs( 2, 1 ) +
( *this )( i, 3 ) * rhs( 3, 1 );
ret( i, 2 ) =
( *this )( i, 0 ) * rhs( 0, 2 ) + ( *this )( i, 1 ) * rhs( 1, 2 ) + ( *this )( i, 2 ) * rhs( 2, 2 ) +
( *this )( i, 3 ) * rhs( 3, 2 );
ret( i, 3 ) =
( *this )( i, 0 ) * rhs( 0, 3 ) + ( *this )( i, 1 ) * rhs( 1, 3 ) + ( *this )( i, 2 ) * rhs( 2, 3 ) +
( *this )( i, 3 ) * rhs( 3, 3 );
}
return ret;
}
};
#endif

View file

@ -0,0 +1,574 @@
#include "TiledNavmeshGenerator.h"
#include <experimental/filesystem>
#include <cstring>
#include <recastnavigation/Detour/Include/DetourNavMeshBuilder.h>
namespace fs = std::experimental::filesystem;
inline unsigned int nextPow2( uint32_t v )
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned int ilog2( uint32_t v )
{
uint32_t r;
uint32_t shift;
r = (v > 0xffff) << 4; v >>= r;
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
bool TiledNavmeshGenerator::init( const std::string& path )
{
if( !fs::exists( path ) )
throw std::runtime_error( "what" );
// ignore logging/bullshit/etc
m_ctx = new rcContext( false );
printf( "[Navmesh] loading obj: %s\n", path.substr( path.find( "pcb_export" ) - 1 ).c_str() );
m_mesh = new rcMeshLoaderObj;
assert( m_mesh );
if( !m_mesh->load( path ) )
{
printf( "[Navmesh] Failed to allocate rcMeshLoaderObj\n" );
return false;
}
rcCalcBounds( m_mesh->getVerts(), m_mesh->getVertCount(), m_meshBMin, m_meshBMax );
m_chunkyMesh = new rcChunkyTriMesh;
assert( m_chunkyMesh );
if( !rcCreateChunkyTriMesh( m_mesh->getVerts(), m_mesh->getTris(), m_mesh->getTriCount(), 256, m_chunkyMesh ) )
{
printf( "[Navmesh] buildTiledNavigation: Failed to build chunky mesh.\n" );
return false;
}
// todo: load some bullshit settings from exd
int gw = 0, gh = 0;
rcCalcGridSize( m_meshBMin, m_meshBMax, m_cellSize, &gw, &gh );
auto ts = static_cast< uint32_t >( m_tileSize );
const uint32_t tw = ( gw + ts - 1 ) / ts;
const uint32_t th = ( gh + ts - 1 ) / ts;
printf( "[Navmesh] - Tiles %d x %d\n", tw, th );
int tileBits = rcMin( ( int ) ilog2( nextPow2( tw * th ) ), 14 );
if( tileBits > 14 )
tileBits = 14;
int polyBits = 22 - tileBits;
m_maxTiles = 1 << tileBits;
m_maxPolysPerTile = 1 << polyBits;
printf( "[Navmesh] - %.1fK verts, %.1fK tris\n", m_mesh->getVertCount() / 1000.0f, m_mesh->getTriCount() / 1000.0f );
return true;
}
TiledNavmeshGenerator::~TiledNavmeshGenerator()
{
delete m_mesh;
delete m_chunkyMesh;
if( m_triareas )
delete[] m_triareas;
delete m_ctx;
rcFreeContourSet( m_cset );
rcFreeHeightField( m_solid );
rcFreeCompactHeightfield(m_chf);
rcFreePolyMesh( m_pmesh );
rcFreePolyMeshDetail( m_dmesh );
dtFreeNavMesh( m_navMesh );
}
void TiledNavmeshGenerator::saveNavmesh( const std::string& name )
{
assert( m_navMesh );
// fuck this gay earth
auto mesh = const_cast< const dtNavMesh* >( m_navMesh );
auto dir = fs::current_path().string() + "/pcb_export/" + name + "/";
auto fileName = dir + name + ".nav";
fs::create_directories( dir );
FILE* fp = fopen( fileName.c_str(), "wb" );
if( !fp )
return;
// Store header.
NavMeshSetHeader header;
header.magic = NAVMESHSET_MAGIC;
header.version = NAVMESHSET_VERSION;
header.numTiles = 0;
for( int i = 0; i < mesh->getMaxTiles(); ++i )
{
auto tile = mesh->getTile( i );
if( !tile || !tile->header || !tile->dataSize )
continue;
header.numTiles++;
}
memcpy( &header.params, mesh->getParams(), sizeof( dtNavMeshParams ) );
fwrite( &header, sizeof( NavMeshSetHeader ), 1, fp );
// Store tiles.
for( int i = 0; i < mesh->getMaxTiles(); ++i )
{
auto tile = mesh->getTile( i );
if( !tile || !tile->header || !tile->dataSize )
continue;
NavMeshTileHeader tileHeader;
tileHeader.tileRef = mesh->getTileRef( tile );
tileHeader.dataSize = tile->dataSize;
fwrite( &tileHeader, sizeof( tileHeader ), 1, fp );
fwrite( tile->data, tile->dataSize, 1, fp );
}
fclose( fp );
auto pos = fileName.find( "pcb_export" );
fileName = fileName.substr( pos - 1 );
printf( "[Navmesh] Saved navmesh to '%s'\n", fileName.c_str() );
}
bool TiledNavmeshGenerator::buildNavmesh()
{
assert( m_mesh );
m_navMesh = dtAllocNavMesh();
if( !m_navMesh )
{
printf( "[Navmesh] buildTiledNavigation: Could not allocate navmesh.\n" );
return false;
}
dtNavMeshParams params{};
rcVcopy( params.orig, m_meshBMin );
params.tileWidth = m_tileSize * m_cellSize;
params.tileHeight = m_tileSize * m_cellSize;
params.maxTiles = m_maxTiles;
params.maxPolys = m_maxPolysPerTile;
dtStatus status;
status = m_navMesh->init( &params );
if( dtStatusFailed( status ) )
{
printf( "[Navmesh] buildTiledNavigation: Could not init navmesh.\n" );
return false;
}
// todo: duplicated from above, we can probably cache all this and only do it once
int gw = 0, gh = 0;
rcCalcGridSize( m_meshBMin, m_meshBMax, m_cellSize, &gw, &gh );
auto ts = static_cast< uint32_t >( m_tileSize );
const int tw = ( gw + ts - 1 ) / ts;
const int th = ( gh + ts - 1 ) / ts;
const float tcs = m_tileSize * m_cellSize;
for( int y = 0; y < th; y++ )
{
for( int x = 0; x < tw; x++ )
{
m_lastBuiltTileBmin[ 0 ] = m_meshBMin[ 0 ] + x * tcs;
m_lastBuiltTileBmin[ 1 ] = m_meshBMin[ 1 ];
m_lastBuiltTileBmin[ 2 ] = m_meshBMin[ 2 ] + y * tcs;
m_lastBuiltTileBmax[ 0 ] = m_meshBMin[ 0 ] + ( x + 1 ) * tcs;
m_lastBuiltTileBmax[ 1 ] = m_meshBMax[ 1 ];
m_lastBuiltTileBmax[ 2 ] = m_meshBMin[ 2 ] + ( y + 1 ) * tcs;
int dataSize = 0;
unsigned char* data = buildTileMesh( x, y, m_lastBuiltTileBmin, m_lastBuiltTileBmax, dataSize );
if( data )
{
// Remove any previous data (navmesh owns and deletes the data).
m_navMesh->removeTile( m_navMesh->getTileRefAt( x, y, 0 ), nullptr, nullptr );
// Let the navmesh own the data.
status = m_navMesh->addTile( data, dataSize, DT_TILE_FREE_DATA, 0, nullptr );
if( dtStatusFailed( status ) )
{
dtFree( data );
}
}
}
}
return true;
}
unsigned char* TiledNavmeshGenerator::buildTileMesh( const int tx, const int ty, const float* bmin, const float* bmax,
int& dataSize )
{
const float* verts = m_mesh->getVerts();
const int nverts = m_mesh->getVertCount();
const int ntris = m_mesh->getTriCount();
// Init build configuration from GUI
memset( &m_cfg, 0, sizeof( m_cfg ) );
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = static_cast< int >( ceilf( m_agentHeight / m_cfg.ch ) );
m_cfg.walkableClimb = static_cast< int >( floorf( m_agentMaxClimb / m_cfg.ch ) );
m_cfg.walkableRadius = static_cast< int >( ceilf( m_agentRadius / m_cfg.cs ) );
m_cfg.maxEdgeLen = static_cast< int >( m_edgeMaxLen / m_cellSize );
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionArea = static_cast< int >( rcSqr( m_regionMinSize ) ); // Note: area = size*size
m_cfg.mergeRegionArea = static_cast< int >( rcSqr( m_regionMergeSize ) ); // Note: area = size*size
m_cfg.maxVertsPerPoly = static_cast< int >( m_vertsPerPoly );
m_cfg.tileSize = static_cast< int >( m_tileSize );
m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
m_cfg.width = m_cfg.tileSize + m_cfg.borderSize * 2;
m_cfg.height = m_cfg.tileSize + m_cfg.borderSize * 2;
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
// Expand the heighfield bounding box by border size to find the extents of geometry we need to build this tile.
//
// This is done in order to make sure that the navmesh tiles connect correctly at the borders,
// and the obstacles close to the border work correctly with the dilation process.
// No polygons (or contours) will be created on the border area.
//
// IMPORTANT!
//
// :''''''''':
// : +-----+ :
// : | | :
// : | |<--- tile to build
// : | | :
// : +-----+ :<-- geometry needed
// :.........:
//
// You should use this bounding box to query your input geometry.
//
// For example if you build a navmesh for terrain, and want the navmesh tiles to match the terrain tile size
// you will need to pass in data from neighbour terrain tiles too! In a simple case, just pass in all the 8 neighbours,
// or use the bounding box below to only pass in a sliver of each of the 8 neighbours.
rcVcopy( m_cfg.bmin, bmin );
rcVcopy( m_cfg.bmax, bmax );
m_cfg.bmin[ 0 ] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmin[ 2 ] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[ 0 ] += m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[ 2 ] += m_cfg.borderSize * m_cfg.cs;
m_solid = rcAllocHeightfield();
if( !m_solid )
{
printf( "[Navmesh] buildNavigation: Out of memory 'solid'.\n" );
return nullptr;
}
if( !rcCreateHeightfield( m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch ) )
{
printf( "[Navmesh] buildNavigation: Could not create solid heightfield.\n" );
return nullptr;
}
// Allocate array that can hold triangle flags.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triareas = new unsigned char[ m_chunkyMesh->maxTrisPerChunk ];
if( !m_triareas )
{
printf( "[Navmesh] buildNavigation: Out of memory 'm_triareas' (%d).\n", m_chunkyMesh->maxTrisPerChunk );
return nullptr;
}
float tbmin[ 2 ];
float tbmax[ 2 ];
tbmin[ 0 ] = m_cfg.bmin[ 0 ];
tbmin[ 1 ] = m_cfg.bmin[ 2 ];
tbmax[ 0 ] = m_cfg.bmax[ 0 ];
tbmax[ 1 ] = m_cfg.bmax[ 2 ];
int cid[512];// TODO: Make grow when returning too many items.
const int ncid = rcGetChunksOverlappingRect( m_chunkyMesh, tbmin, tbmax, cid, 512 );
if( !ncid )
return nullptr;
m_tileTriCount = 0;
for( int i = 0; i < ncid; ++i )
{
const rcChunkyTriMeshNode& node = m_chunkyMesh->nodes[ cid[ i ] ];
const int* ctris = &m_chunkyMesh->tris[ node.i * 3 ];
const int nctris = node.n;
m_tileTriCount += nctris;
memset( m_triareas, 0, nctris * sizeof( unsigned char ) );
rcMarkWalkableTriangles( m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, ctris, nctris, m_triareas );
if( !rcRasterizeTriangles( m_ctx, verts, nverts, ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb ) )
return nullptr;
}
delete[] m_triareas;
m_triareas = nullptr;
// Once all geometry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
rcFilterLowHangingWalkableObstacles( m_ctx, m_cfg.walkableClimb, *m_solid );
rcFilterLedgeSpans( m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid );
rcFilterWalkableLowHeightSpans( m_ctx, m_cfg.walkableHeight, *m_solid );
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = rcAllocCompactHeightfield();
if( !m_chf )
{
printf( "[Navmesh] buildNavigation: Out of memory 'chf'." );
return nullptr;
}
if( !rcBuildCompactHeightfield( m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf ) )
{
printf( "[Navmesh] buildNavigation: Could not build compact data." );
return nullptr;
}
rcFreeHeightField( m_solid );
m_solid = nullptr;
// Erode the walkable area by agent radius.
if( !rcErodeWalkableArea( m_ctx, m_cfg.walkableRadius, *m_chf ) )
{
printf( "[Navmesh] buildNavigation: Could not erode." );
return nullptr;
}
// (Optional) Mark areas.
// const ConvexVolume* vols = m_mesh->getConvexVolumes();
// for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
// rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 martitioning methods, each with some pros and cons:
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
// 2) Monotone partioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
if( m_partitionType == SAMPLE_PARTITION_WATERSHED )
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if( !rcBuildDistanceField( m_ctx, *m_chf ) )
{
printf( "[Navmesh] buildNavigation: Could not build distance field." );
return nullptr;
}
// Partition the walkable surface into simple regions without holes.
if( !rcBuildRegions( m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea ) )
{
printf( "[Navmesh] buildNavigation: Could not build watershed regions." );
return nullptr;
}
}
else if( m_partitionType == SAMPLE_PARTITION_MONOTONE )
{
// Partition the walkable surface into simple regions without holes.
// Monotone partitioning does not need distancefield.
if( !rcBuildRegionsMonotone( m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea ) )
{
printf( "[Navmesh] buildNavigation: Could not build monotone regions." );
return nullptr;
}
}
else // SAMPLE_PARTITION_LAYERS
{
// Partition the walkable surface into simple regions without holes.
if( !rcBuildLayerRegions( m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea ) )
{
printf( "[Navmesh] buildNavigation: Could not build layer regions." );
return nullptr;
}
}
// Create contours.
m_cset = rcAllocContourSet();
if( !m_cset )
{
printf( "[Navmesh] buildNavigation: Out of memory 'cset'." );
return nullptr;
}
if( !rcBuildContours( m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset ) )
{
printf( "[Navmesh] buildNavigation: Could not create contours." );
return nullptr;
}
if( m_cset->nconts == 0 )
{
return nullptr;
}
// Build polygon navmesh from the contours.
m_pmesh = rcAllocPolyMesh();
if( !m_pmesh )
{
printf( "[Navmesh] buildNavigation: Out of memory 'pmesh'." );
return nullptr;
}
if( !rcBuildPolyMesh( m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh ) )
{
printf( "[Navmesh] buildNavigation: Could not triangulate contours." );
return nullptr;
}
// Build detail mesh.
m_dmesh = rcAllocPolyMeshDetail();
if( !m_dmesh )
{
printf( "[Navmesh] buildNavigation: Out of memory 'dmesh'." );
return nullptr;
}
if( !rcBuildPolyMeshDetail( m_ctx, *m_pmesh, *m_chf,
m_cfg.detailSampleDist, m_cfg.detailSampleMaxError,
*m_dmesh ) )
{
printf( "[Navmesh] buildNavigation: Could build polymesh detail." );
return nullptr;
}
rcFreeCompactHeightfield( m_chf );
rcFreeContourSet( m_cset );
m_chf = nullptr;
m_cset = nullptr;
unsigned char* navData = 0;
int navDataSize = 0;
if( m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON )
{
if( m_pmesh->nverts >= 0xffff )
{
// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
printf( "[Navmesh] Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff );
return nullptr;
}
// Update poly flags from areas.
for( int i = 0; i < m_pmesh->npolys; ++i )
{
if( m_pmesh->areas[ i ] == RC_WALKABLE_AREA )
m_pmesh->areas[ i ] = SAMPLE_POLYAREA_GROUND;
if( m_pmesh->areas[ i ] == SAMPLE_POLYAREA_GROUND ||
m_pmesh->areas[ i ] == SAMPLE_POLYAREA_GRASS ||
m_pmesh->areas[ i ] == SAMPLE_POLYAREA_ROAD )
{
m_pmesh->flags[ i ] = SAMPLE_POLYFLAGS_WALK;
}
else if( m_pmesh->areas[ i ] == SAMPLE_POLYAREA_WATER )
{
m_pmesh->flags[ i ] = SAMPLE_POLYFLAGS_SWIM;
}
else if( m_pmesh->areas[ i ] == SAMPLE_POLYAREA_DOOR )
{
m_pmesh->flags[ i ] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
}
}
dtNavMeshCreateParams params;
memset( &params, 0, sizeof( params ) );
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = nullptr;
params.offMeshConRad = nullptr;
params.offMeshConDir = nullptr;
params.offMeshConAreas = nullptr;
params.offMeshConFlags = nullptr;
params.offMeshConUserID = nullptr;
params.offMeshConCount = 0;
params.walkableHeight = m_agentHeight;
params.walkableRadius = m_agentRadius;
params.walkableClimb = m_agentMaxClimb;
params.tileX = tx;
params.tileY = ty;
params.tileLayer = 0;
rcVcopy( params.bmin, m_pmesh->bmin );
rcVcopy( params.bmax, m_pmesh->bmax );
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
params.buildBvTree = true;
if( !dtCreateNavMeshData( &params, &navData, &navDataSize ) )
{
printf( "[Navmesh] Could not build Detour navmesh." );
return nullptr;
}
}
rcFreePolyMesh( m_pmesh );
rcFreePolyMeshDetail( m_dmesh );
m_pmesh = nullptr;
m_dmesh = nullptr;
dataSize = navDataSize;
return navData;
}

View file

@ -0,0 +1,123 @@
#ifndef SAPPHIRE_TILEDNAVMESHGENERATOR_H
#define SAPPHIRE_TILEDNAVMESHGENERATOR_H
#include <string>
#include <cassert>
#include <cmath>
#include "ext/MeshLoaderObj.h"
#include "ext/ChunkyTriMesh.h"
#include "recastnavigation/Detour/Include/DetourNavMesh.h"
#include "recastnavigation/Detour/Include/DetourNavMeshQuery.h"
#include "recastnavigation/Recast/Include/Recast.h"
class TiledNavmeshGenerator
{
public:
enum SamplePartitionType
{
SAMPLE_PARTITION_WATERSHED,
SAMPLE_PARTITION_MONOTONE,
SAMPLE_PARTITION_LAYERS,
};
enum SamplePolyAreas
{
SAMPLE_POLYAREA_GROUND,
SAMPLE_POLYAREA_WATER,
SAMPLE_POLYAREA_ROAD,
SAMPLE_POLYAREA_DOOR,
SAMPLE_POLYAREA_GRASS,
SAMPLE_POLYAREA_JUMP,
};
enum SamplePolyFlags
{
SAMPLE_POLYFLAGS_WALK = 0x01, // Ability to walk (ground, grass, road)
SAMPLE_POLYFLAGS_SWIM = 0x02, // Ability to swim (water).
SAMPLE_POLYFLAGS_DOOR = 0x04, // Ability to move through doors.
SAMPLE_POLYFLAGS_JUMP = 0x08, // Ability to jump.
SAMPLE_POLYFLAGS_DISABLED = 0x10, // Disabled polygon
SAMPLE_POLYFLAGS_ALL = 0xffff // All abilities.
};
static const int NAVMESHSET_MAGIC = 'M'<<24 | 'S'<<16 | 'E'<<8 | 'T'; //'MSET';
static const int NAVMESHSET_VERSION = 1;
struct NavMeshSetHeader
{
int magic;
int version;
int numTiles;
dtNavMeshParams params;
};
struct NavMeshTileHeader
{
dtTileRef tileRef;
int dataSize;
};
TiledNavmeshGenerator() = default;
~TiledNavmeshGenerator();
bool init( const std::string& path );
unsigned char* buildTileMesh( const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize );
bool buildNavmesh();
void saveNavmesh( const std::string& name );
private:
rcConfig m_cfg;
rcMeshLoaderObj* m_mesh;
rcChunkyTriMesh* m_chunkyMesh;
rcContext* m_ctx;
dtNavMesh* m_navMesh;
rcHeightfield* m_solid;
rcContourSet* m_cset;
rcPolyMesh* m_pmesh;
rcPolyMeshDetail* m_dmesh;
rcCompactHeightfield* m_chf;
unsigned char* m_triareas;
int m_maxTiles = 0;
int m_maxPolysPerTile = 0;
int m_tileTriCount = 0;
int m_partitionType = SamplePartitionType::SAMPLE_PARTITION_WATERSHED;
float m_meshBMin[ 3 ];
float m_meshBMax[ 3 ];
float m_lastBuiltTileBmin[ 3 ];
float m_lastBuiltTileBmax[ 3 ];
// options
float m_tileSize = 160.f;
float m_cellSize = 0.2f;
float m_cellHeight = 0.2f;
float m_agentMaxSlope = 56.f;
float m_agentHeight = 2.f;
float m_agentMaxClimb = 0.6f;
float m_agentRadius = 0.5f;
float m_regionMinSize = 8.f;
float m_regionMergeSize = 20.f;
float m_edgeMaxLen = 12.f;
float m_edgeMaxError = 1.4f;
float m_vertsPerPoly = 6.f;
float m_detailSampleDist = 6.f;
float m_detailSampleMaxError = 1.f;
};
#endif //SAPPHIRE_TILEDNAVMESHGENERATOR_H

View file

@ -0,0 +1,331 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "ChunkyTriMesh.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
struct BoundsItem
{
float bmin[ 2 ];
float bmax[ 2 ];
int i;
};
static int compareItemX( const void* va, const void* vb )
{
const BoundsItem* a = ( const BoundsItem* ) va;
const BoundsItem* b = ( const BoundsItem* ) vb;
if( a->bmin[ 0 ] < b->bmin[ 0 ] )
return -1;
if( a->bmin[ 0 ] > b->bmin[ 0 ] )
return 1;
return 0;
}
static int compareItemY( const void* va, const void* vb )
{
const BoundsItem* a = ( const BoundsItem* ) va;
const BoundsItem* b = ( const BoundsItem* ) vb;
if( a->bmin[ 1 ] < b->bmin[ 1 ] )
return -1;
if( a->bmin[ 1 ] > b->bmin[ 1 ] )
return 1;
return 0;
}
static void calcExtends( const BoundsItem* items, const int /*nitems*/,
const int imin, const int imax,
float* bmin, float* bmax )
{
bmin[ 0 ] = items[ imin ].bmin[ 0 ];
bmin[ 1 ] = items[ imin ].bmin[ 1 ];
bmax[ 0 ] = items[ imin ].bmax[ 0 ];
bmax[ 1 ] = items[ imin ].bmax[ 1 ];
for( int i = imin + 1; i < imax; ++i )
{
const BoundsItem& it = items[ i ];
if( it.bmin[ 0 ] < bmin[ 0 ] )
bmin[ 0 ] = it.bmin[ 0 ];
if( it.bmin[ 1 ] < bmin[ 1 ] )
bmin[ 1 ] = it.bmin[ 1 ];
if( it.bmax[ 0 ] > bmax[ 0 ] )
bmax[ 0 ] = it.bmax[ 0 ];
if( it.bmax[ 1 ] > bmax[ 1 ] )
bmax[ 1 ] = it.bmax[ 1 ];
}
}
inline int longestAxis( float x, float y )
{
return y > x ? 1 : 0;
}
static void subdivide( BoundsItem* items, int nitems, int imin, int imax, int trisPerChunk,
int& curNode, rcChunkyTriMeshNode* nodes, const int maxNodes,
int& curTri, int* outTris, const int* inTris )
{
int inum = imax - imin;
int icur = curNode;
if( curNode > maxNodes )
return;
rcChunkyTriMeshNode& node = nodes[ curNode++ ];
if( inum <= trisPerChunk )
{
// Leaf
calcExtends( items, nitems, imin, imax, node.bmin, node.bmax );
// Copy triangles.
node.i = curTri;
node.n = inum;
for( int i = imin; i < imax; ++i )
{
const int* src = &inTris[ items[ i ].i * 3 ];
int* dst = &outTris[ curTri * 3 ];
curTri++;
dst[ 0 ] = src[ 0 ];
dst[ 1 ] = src[ 1 ];
dst[ 2 ] = src[ 2 ];
}
}
else
{
// Split
calcExtends( items, nitems, imin, imax, node.bmin, node.bmax );
int axis = longestAxis( node.bmax[ 0 ] - node.bmin[ 0 ],
node.bmax[ 1 ] - node.bmin[ 1 ] );
if( axis == 0 )
{
// Sort along x-axis
qsort( items + imin, static_cast<size_t>(inum), sizeof( BoundsItem ), compareItemX );
}
else if( axis == 1 )
{
// Sort along y-axis
qsort( items + imin, static_cast<size_t>(inum), sizeof( BoundsItem ), compareItemY );
}
int isplit = imin + inum / 2;
// Left
subdivide( items, nitems, imin, isplit, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris );
// Right
subdivide( items, nitems, isplit, imax, trisPerChunk, curNode, nodes, maxNodes, curTri, outTris, inTris );
int iescape = curNode - icur;
// Negative index means escape.
node.i = -iescape;
}
}
bool rcCreateChunkyTriMesh( const float* verts, const int* tris, int ntris,
int trisPerChunk, rcChunkyTriMesh* cm )
{
int nchunks = ( ntris + trisPerChunk - 1 ) / trisPerChunk;
cm->nodes = new rcChunkyTriMeshNode[nchunks * 4];
if( !cm->nodes )
return false;
cm->tris = new int[ntris * 3];
if( !cm->tris )
return false;
cm->ntris = ntris;
// Build tree
BoundsItem* items = new BoundsItem[ntris];
if( !items )
return false;
for( int i = 0; i < ntris; i++ )
{
const int* t = &tris[ i * 3 ];
BoundsItem& it = items[ i ];
it.i = i;
// Calc triangle XZ bounds.
it.bmin[ 0 ] = it.bmax[ 0 ] = verts[ t[ 0 ] * 3 + 0 ];
it.bmin[ 1 ] = it.bmax[ 1 ] = verts[ t[ 0 ] * 3 + 2 ];
for( int j = 1; j < 3; ++j )
{
const float* v = &verts[ t[ j ] * 3 ];
if( v[ 0 ] < it.bmin[ 0 ] )
it.bmin[ 0 ] = v[ 0 ];
if( v[ 2 ] < it.bmin[ 1 ] )
it.bmin[ 1 ] = v[ 2 ];
if( v[ 0 ] > it.bmax[ 0 ] )
it.bmax[ 0 ] = v[ 0 ];
if( v[ 2 ] > it.bmax[ 1 ] )
it.bmax[ 1 ] = v[ 2 ];
}
}
int curTri = 0;
int curNode = 0;
subdivide( items, ntris, 0, ntris, trisPerChunk, curNode, cm->nodes, nchunks * 4, curTri, cm->tris, tris );
delete[] items;
cm->nnodes = curNode;
// Calc max tris per node.
cm->maxTrisPerChunk = 0;
for( int i = 0; i < cm->nnodes; ++i )
{
rcChunkyTriMeshNode& node = cm->nodes[ i ];
const bool isLeaf = node.i >= 0;
if( !isLeaf )
continue;
if( node.n > cm->maxTrisPerChunk )
cm->maxTrisPerChunk = node.n;
}
return true;
}
inline bool checkOverlapRect( const float amin[2], const float amax[2],
const float bmin[2], const float bmax[2] )
{
bool overlap = true;
overlap = ( amin[ 0 ] > bmax[ 0 ] || amax[ 0 ] < bmin[ 0 ] ) ? false : overlap;
overlap = ( amin[ 1 ] > bmax[ 1 ] || amax[ 1 ] < bmin[ 1 ] ) ? false : overlap;
return overlap;
}
int rcGetChunksOverlappingRect( const rcChunkyTriMesh* cm,
float bmin[2], float bmax[2],
int* ids, const int maxIds )
{
// Traverse tree
int i = 0;
int n = 0;
while( i < cm->nnodes )
{
const rcChunkyTriMeshNode* node = &cm->nodes[ i ];
const bool overlap = checkOverlapRect( bmin, bmax, node->bmin, node->bmax );
const bool isLeafNode = node->i >= 0;
if( isLeafNode && overlap )
{
if( n < maxIds )
{
ids[ n ] = i;
n++;
}
}
if( overlap || isLeafNode )
i++;
else
{
const int escapeIndex = -node->i;
i += escapeIndex;
}
}
return n;
}
static bool checkOverlapSegment( const float p[2], const float q[2],
const float bmin[2], const float bmax[2] )
{
static const float EPSILON = 1e-6f;
float tmin = 0;
float tmax = 1;
float d[2];
d[ 0 ] = q[ 0 ] - p[ 0 ];
d[ 1 ] = q[ 1 ] - p[ 1 ];
for( int i = 0; i < 2; i++ )
{
if( fabsf( d[ i ] ) < EPSILON )
{
// Ray is parallel to slab. No hit if origin not within slab
if( p[ i ] < bmin[ i ] || p[ i ] > bmax[ i ] )
return false;
}
else
{
// Compute intersection t value of ray with near and far plane of slab
float ood = 1.0f / d[ i ];
float t1 = ( bmin[ i ] - p[ i ] ) * ood;
float t2 = ( bmax[ i ] - p[ i ] ) * ood;
if( t1 > t2 )
{
float tmp = t1;
t1 = t2;
t2 = tmp;
}
if( t1 > tmin )
tmin = t1;
if( t2 < tmax )
tmax = t2;
if( tmin > tmax )
return false;
}
}
return true;
}
int rcGetChunksOverlappingSegment( const rcChunkyTriMesh* cm,
float p[2], float q[2],
int* ids, const int maxIds )
{
// Traverse tree
int i = 0;
int n = 0;
while( i < cm->nnodes )
{
const rcChunkyTriMeshNode* node = &cm->nodes[ i ];
const bool overlap = checkOverlapSegment( p, q, node->bmin, node->bmax );
const bool isLeafNode = node->i >= 0;
if( isLeafNode && overlap )
{
if( n < maxIds )
{
ids[ n ] = i;
n++;
}
}
if( overlap || isLeafNode )
i++;
else
{
const int escapeIndex = -node->i;
i += escapeIndex;
}
}
return n;
}

View file

@ -0,0 +1,68 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef CHUNKYTRIMESH_H
#define CHUNKYTRIMESH_H
struct rcChunkyTriMeshNode
{
float bmin[ 2 ];
float bmax[ 2 ];
int i;
int n;
};
struct rcChunkyTriMesh
{
inline rcChunkyTriMesh() :
nodes( 0 ), nnodes( 0 ), tris( 0 ), ntris( 0 ), maxTrisPerChunk( 0 )
{
};
inline ~rcChunkyTriMesh()
{
delete[] nodes;
delete[] tris;
}
rcChunkyTriMeshNode* nodes;
int nnodes;
int* tris;
int ntris;
int maxTrisPerChunk;
private:
// Explicitly disabled copy constructor and copy assignment operator.
rcChunkyTriMesh( const rcChunkyTriMesh& );
rcChunkyTriMesh& operator=( const rcChunkyTriMesh& );
};
/// Creates partitioned triangle mesh (AABB tree),
/// where each node contains at max trisPerChunk triangles.
bool rcCreateChunkyTriMesh( const float* verts, const int* tris, int ntris,
int trisPerChunk, rcChunkyTriMesh* cm );
/// Returns the chunk indices which overlap the input rectable.
int rcGetChunksOverlappingRect( const rcChunkyTriMesh* cm, float bmin[2], float bmax[2], int* ids, const int maxIds );
/// Returns the chunk indices which overlap the input segment.
int rcGetChunksOverlappingSegment( const rcChunkyTriMesh* cm, float p[2], float q[2], int* ids, const int maxIds );
#endif // CHUNKYTRIMESH_H

View file

@ -0,0 +1,252 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "MeshLoaderObj.h"
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#define _USE_MATH_DEFINES
#include <math.h>
rcMeshLoaderObj::rcMeshLoaderObj() :
m_scale( 1.0f ),
m_verts( 0 ),
m_tris( 0 ),
m_normals( 0 ),
m_vertCount( 0 ),
m_triCount( 0 )
{
}
rcMeshLoaderObj::~rcMeshLoaderObj()
{
delete[] m_verts;
delete[] m_normals;
delete[] m_tris;
}
void rcMeshLoaderObj::addVertex( float x, float y, float z, int& cap )
{
if( m_vertCount + 1 > cap )
{
cap = !cap ? 8 : cap * 2;
float* nv = new float[cap * 3];
if( m_vertCount )
memcpy( nv, m_verts, m_vertCount * 3 * sizeof( float ) );
delete[] m_verts;
m_verts = nv;
}
float* dst = &m_verts[ m_vertCount * 3 ];
*dst++ = x * m_scale;
*dst++ = y * m_scale;
*dst++ = z * m_scale;
m_vertCount++;
}
void rcMeshLoaderObj::addTriangle( int a, int b, int c, int& cap )
{
if( m_triCount + 1 > cap )
{
cap = !cap ? 8 : cap * 2;
int* nv = new int[cap * 3];
if( m_triCount )
memcpy( nv, m_tris, m_triCount * 3 * sizeof( int ) );
delete[] m_tris;
m_tris = nv;
}
int* dst = &m_tris[ m_triCount * 3 ];
*dst++ = a;
*dst++ = b;
*dst++ = c;
m_triCount++;
}
static char* parseRow( char* buf, char* bufEnd, char* row, int len )
{
bool start = true;
bool done = false;
int n = 0;
while( !done && buf < bufEnd )
{
char c = *buf;
buf++;
// multirow
switch( c )
{
case '\\':
break;
case '\n':
if( start )
break;
done = true;
break;
case '\r':
break;
case '\t':
case ' ':
if( start )
break;
// else falls through
default:
start = false;
row[ n++ ] = c;
if( n >= len - 1 )
done = true;
break;
}
}
row[ n ] = '\0';
return buf;
}
static int parseFace( char* row, int* data, int n, int vcnt )
{
int j = 0;
while( *row != '\0' )
{
// Skip initial white space
while( *row != '\0' && ( *row == ' ' || *row == '\t' ) )
row++;
char* s = row;
// Find vertex delimiter and terminated the string there for conversion.
while( *row != '\0' && *row != ' ' && *row != '\t' )
{
if( *row == '/' )
*row = '\0';
row++;
}
if( *s == '\0' )
continue;
int vi = atoi( s );
data[ j++ ] = vi < 0 ? vi + vcnt : vi - 1;
if( j >= n )
return j;
}
return j;
}
bool rcMeshLoaderObj::load( const std::string& filename )
{
char* buf = 0;
FILE* fp = fopen( filename.c_str(), "rb" );
if( !fp )
return false;
if( fseek( fp, 0, SEEK_END ) != 0 )
{
fclose( fp );
return false;
}
long bufSize = ftell( fp );
if( bufSize < 0 )
{
fclose( fp );
return false;
}
if( fseek( fp, 0, SEEK_SET ) != 0 )
{
fclose( fp );
return false;
}
buf = new char[bufSize];
if( !buf )
{
fclose( fp );
return false;
}
size_t readLen = fread( buf, bufSize, 1, fp );
fclose( fp );
if( readLen != 1 )
{
delete[] buf;
return false;
}
char* src = buf;
char* srcEnd = buf + bufSize;
char row[512];
int face[32];
float x, y, z;
int nv;
int vcap = 0;
int tcap = 0;
while( src < srcEnd )
{
// Parse one row
row[ 0 ] = '\0';
src = parseRow( src, srcEnd, row, sizeof( row ) / sizeof( char ) );
// Skip comments
if( row[ 0 ] == '#' )
continue;
if( row[ 0 ] == 'v' && row[ 1 ] != 'n' && row[ 1 ] != 't' )
{
// Vertex pos
sscanf( row + 1, "%f %f %f", &x, &y, &z );
addVertex( x, y, z, vcap );
}
if( row[ 0 ] == 'f' )
{
// Faces
nv = parseFace( row + 1, face, 32, m_vertCount );
for( int i = 2; i < nv; ++i )
{
const int a = face[ 0 ];
const int b = face[ i - 1 ];
const int c = face[ i ];
if( a < 0 || a >= m_vertCount || b < 0 || b >= m_vertCount || c < 0 || c >= m_vertCount )
continue;
addTriangle( a, b, c, tcap );
}
}
}
delete[] buf;
// Calculate normals.
m_normals = new float[m_triCount * 3];
for( int i = 0; i < m_triCount * 3; i += 3 )
{
const float* v0 = &m_verts[ m_tris[ i ] * 3 ];
const float* v1 = &m_verts[ m_tris[ i + 1 ] * 3 ];
const float* v2 = &m_verts[ m_tris[ i + 2 ] * 3 ];
float e0[3], e1[3];
for( int j = 0; j < 3; ++j )
{
e0[ j ] = v1[ j ] - v0[ j ];
e1[ j ] = v2[ j ] - v0[ j ];
}
float* n = &m_normals[ i ];
n[ 0 ] = e0[ 1 ] * e1[ 2 ] - e0[ 2 ] * e1[ 1 ];
n[ 1 ] = e0[ 2 ] * e1[ 0 ] - e0[ 0 ] * e1[ 2 ];
n[ 2 ] = e0[ 0 ] * e1[ 1 ] - e0[ 1 ] * e1[ 0 ];
float d = sqrtf( n[ 0 ] * n[ 0 ] + n[ 1 ] * n[ 1 ] + n[ 2 ] * n[ 2 ] );
if( d > 0 )
{
d = 1.0f / d;
n[ 0 ] *= d;
n[ 1 ] *= d;
n[ 2 ] *= d;
}
}
m_filename = filename;
return true;
}

View file

@ -0,0 +1,82 @@
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef MESHLOADER_OBJ
#define MESHLOADER_OBJ
#include <string>
class rcMeshLoaderObj
{
public:
rcMeshLoaderObj();
~rcMeshLoaderObj();
bool load( const std::string& fileName );
const float* getVerts() const
{
return m_verts;
}
const float* getNormals() const
{
return m_normals;
}
const int* getTris() const
{
return m_tris;
}
int getVertCount() const
{
return m_vertCount;
}
int getTriCount() const
{
return m_triCount;
}
const std::string& getFileName() const
{
return m_filename;
}
private:
// Explicitly disabled copy constructor and copy assignment operator.
rcMeshLoaderObj( const rcMeshLoaderObj& );
rcMeshLoaderObj& operator=( const rcMeshLoaderObj& );
void addVertex( float x, float y, float z, int& cap );
void addTriangle( int a, int b, int c, int& cap );
std::string m_filename;
float m_scale;
float* m_verts;
int* m_tris;
float* m_normals;
int m_vertCount;
int m_triCount;
};
#endif // MESHLOADER_OBJ

View file

@ -0,0 +1,59 @@
#ifndef NAVMESH_EXPORTER_H
#define NAVMESH_EXPORTER_H
#include <iostream>
#include <cstdint>
#include <fstream>
#include <string>
#include <chrono>
#include "exporter.h"
#include "obj_exporter.h"
#include "nav/TiledNavmeshGenerator.h"
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
class NavmeshExporter
{
public:
static void exportZone( const ExportedZone& zone )
{
auto start = std::chrono::high_resolution_clock::now();
static std::string currPath = std::experimental::filesystem::current_path().string();
auto dir = fs::current_path().string() + "/pcb_export/" + zone.name + "/";
auto fileName = dir + zone.name;
auto objName = fileName + ".obj";
std::error_code e;
if( !fs::exists( objName, e ) )
ObjExporter::exportZone( zone );
TiledNavmeshGenerator gen;
if( !gen.init( objName ) )
{
printf( "[Navmesh] failed to init TiledNavmeshGenerator for file '%s'\n", zone.name.c_str() );
return;
}
if( !gen.buildNavmesh() )
{
printf( "[Navmesh] Failed to build navmesh for '%s'\n", zone.name.c_str() );
return;
}
gen.saveNavmesh( zone.name );
auto end = std::chrono::high_resolution_clock::now();
printf( "[Navmesh] Finished exporting %s in %lu ms\n", zone.name.c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
}
};
#endif // !OBJ_EXPORTER_H

View file

@ -0,0 +1,137 @@
#ifndef OBJ_EXPORTER_H
#define OBJ_EXPORTER_H
#include <chrono>
#include <cstdint>
#include <experimental/filesystem>
#include <fstream>
#include <string>
#include "exporter.h"
class ObjExporter
{
public:
static std::string exportZone( const ExportedZone& zone )
{
static std::string currPath = std::experimental::filesystem::current_path().string();
auto start = std::chrono::high_resolution_clock::now();
auto dir = currPath + "/pcb_export/" + zone.name + "/";
auto fileName = dir + zone.name + ".obj";
std::error_code e;
if( !std::experimental::filesystem::exists( dir, e ) )
{
if( !std::experimental::filesystem::create_directories( dir, e ) )
{
printf( "Unable to create directory '%s'", ( dir ).c_str() );
return "";
}
}
std::ofstream of( fileName, std::ios::trunc );
int indicesOffset = 0;
int meshesCount = 0;
if( of.good() )
{
of.close();
of.open( fileName, std::ios::app );
for( const auto& group : zone.groups )
{
exportGroup( group.second, of, indicesOffset, meshesCount );
}
of.flush();
of.close();
}
auto end = std::chrono::high_resolution_clock::now();
printf( "[Obj] Finished exporting %s in %lu ms\n",
fileName.substr( fileName.find( "pcb_export" ) - 1 ).c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
return fileName;
}
static std::string exportGroup( const std::string& zoneName, const ExportedGroup& group )
{
static std::string currPath = std::experimental::filesystem::current_path().string();
auto start = std::chrono::high_resolution_clock::now();
auto dir = currPath + "/pcb_export/" + zoneName + "/groups/";
auto fileName = dir + group.name + ".obj";
std::error_code e;
if( !std::experimental::filesystem::exists( dir, e ) )
{
if( !std::experimental::filesystem::create_directories( dir, e ) )
{
printf( "Unable to create directory '%s'", ( dir ).c_str() );
return "";
}
}
std::ofstream of( fileName, std::ios::trunc );
int indicesOffset = 0;
int modelCount = 0;
if( of.good() )
{
of.close();
of.open( fileName, std::ios::app );
exportGroup( group, of, indicesOffset, modelCount );
of.flush();
of.close();
}
auto end = std::chrono::high_resolution_clock::now();
printf( "[Obj] Finished exporting %s in %lu ms\n",
fileName.substr( fileName.find( "pcb_export" ) - 1 ).c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
return fileName;
}
private:
static void exportGroup( const ExportedGroup& group, std::ofstream& of, int& indicesOffset, int& modelCount )
{
int currModelCount = modelCount;
of << "o " << group.name << '_' << std::to_string( currModelCount ) << '\n';
for( const auto& model : group.models )
{
modelCount++;
of << "o " << model.second.name << '_' << std::to_string( currModelCount ) << '_' << std::to_string( modelCount ) << '\n';
int meshCount = 0;
for( const auto& mesh : model.second.meshes )
{
for( int i = 0; i < mesh.verts.size(); i += 3 )
{
of << "v " <<
std::to_string( mesh.verts[ i ] ) << ' ' <<
std::to_string( mesh.verts[ i + 1 ] ) << ' ' <<
std::to_string( mesh.verts[ i + 2 ] ) << '\n';
}
of << "g " <<
model.second.name << '_' <<
std::to_string( currModelCount ) << '_' << std::to_string( modelCount ) << '_' << std::to_string( meshCount++ ) << '\n';
for( int i = 0; i < mesh.indices.size(); i += 3 )
{
of << "f " <<
std::to_string( mesh.indices[ i ] + indicesOffset + 1 ) << ' ' <<
std::to_string( mesh.indices[ i + 1 ] + indicesOffset + 1 ) << ' ' +
std::to_string( mesh.indices[ i + 2 ] + indicesOffset + 1 ) << '\n';
}
indicesOffset += mesh.verts.size() / 3;
}
}
//of.flush();
}
};
#endif // !OBJ_EXPORTER_H

176
src/tools/nav_export/pcb.h Normal file
View file

@ -0,0 +1,176 @@
#ifndef _PCB_H
#define _PCB_H
#include <stdint.h>
#include <vector>
struct PCB_HEADER
{
uint32_t unknown_1;
uint32_t unknown_2;
uint32_t num_entries; // count starts at 0
uint32_t total_indices;
uint64_t padding;
};
struct PCB_BLOCK_HEADER
{
uint32_t type; // 0 for entry, 0x30 for group
uint32_t group_size; // when group size in bytes for the group block
// bounding box
float x;
float y;
float z;
float x1;
float y1;
float z1;
// number of vertices packed into 16 bit
uint16_t num_v16;
// number of indices
uint16_t num_indices;
// number of normal floar vertices
uint32_t num_vertices;
};
struct PCB_VERTEXDATA
{
float x;
float y;
float z;
};
struct PCB_INDEXDATA
{
uint8_t index[3];
uint8_t unknown[3];
uint8_t unknown1[6];
};
struct PCB_VERTEXDATAI16
{
uint16_t x;
uint16_t y;
uint16_t z;
};
struct PCB_BLOCK_DATA
{
std::vector< PCB_VERTEXDATA > vertices;
std::vector< PCB_VERTEXDATAI16 > vertices_i16;
std::vector< PCB_INDEXDATA > indices;
};
struct PCB_BLOCK_ENTRY
{
PCB_BLOCK_HEADER header;
PCB_BLOCK_DATA data;
};
struct PCB_FILE
{
PCB_HEADER header;
std::vector< PCB_BLOCK_ENTRY > entries;
PCB_FILE( char* buf )
{
uint32_t offset = 0;
memcpy( &header, buf, sizeof( header ));
offset += sizeof( header );
entries.resize( header.num_entries );
bool isgroup = true;
while( isgroup )
{
PCB_BLOCK_ENTRY block_entry;
memcpy( &block_entry.header, buf + offset, sizeof( block_entry.header ) );
isgroup = block_entry.header.type == 0x30;
//printf( "BLOCKHEADER_%X: type: %i, group_size: %i\n", offset, block_entry.header.type, block_entry.header.group_size );
//
if( isgroup )
{
parseBlockEntry( buf + offset + 0x30, entries, offset);
offset += block_entry.header.group_size;
}
else
{
parseBlockEntry( buf + offset, entries, offset );
}
}
}
int parseBlockEntry( char* data, std::vector< PCB_BLOCK_ENTRY >& entries, int gOff )
{
int offset = 0;
bool isgroup = true;
while( isgroup )
{
PCB_BLOCK_ENTRY block_entry;
memcpy( &block_entry.header, data + offset, sizeof( block_entry.header ) );
isgroup = block_entry.header.type == 0x30;
//printf( " BLOCKHEADER_%X: type: %i, group_size: %i\n", gOff + offset, block_entry.header.type, block_entry.header.group_size );
if( isgroup )
{
parseBlockEntry( data + offset + 0x30, entries, gOff + offset );
offset += block_entry.header.group_size;
}
else
{
/* printf( "\tnum_v16: %i, num_indices: %i, num_vertices: %i\n\n",
block_entry.header.num_v16, block_entry.header.num_indices, block_entry.header.num_vertices );*/
int doffset = sizeof( block_entry.header ) + offset;
uint16_t block_size = sizeof( block_entry.header ) +
block_entry.header.num_vertices * 3 * 4 +
block_entry.header.num_v16 * 6 +
block_entry.header.num_indices * 6;
if( block_entry.header.num_vertices != 0 )
{
block_entry.data.vertices.resize( block_entry.header.num_vertices );
int32_t size_vertexbuffer = block_entry.header.num_vertices * 3;
memcpy( &block_entry.data.vertices[ 0 ], data + doffset, size_vertexbuffer * 4 );
doffset += size_vertexbuffer * 4;
}
if( block_entry.header.num_v16 != 0 )
{
block_entry.data.vertices_i16.resize( block_entry.header.num_v16 );
int32_t size_unknownbuffer = block_entry.header.num_v16 * 6;
memcpy( &block_entry.data.vertices_i16[ 0 ], data + doffset, size_unknownbuffer );
doffset += block_entry.header.num_v16 * 6;
}
if( block_entry.header.num_indices != 0 )
{
block_entry.data.indices.resize( block_entry.header.num_indices );
int32_t size_indexbuffer = block_entry.header.num_indices * 12;
memcpy( &block_entry.data.indices[ 0 ], data + doffset, size_indexbuffer );
doffset += size_indexbuffer;
}
entries.push_back( block_entry );
}
}
return 0;
}
};
struct PCB_LIST_ENTRY
{
uint32_t id;
float x, y, z, x2, y2, z2, rot;
};
struct PCB_LIST_BASE_ENTRY
{
float x, y, z, x2, y2, z2, rot;
};
struct PCB_LIST_FILE
{
uint32_t count;
PCB_LIST_BASE_ENTRY entry;
std::vector< PCB_LIST_ENTRY > entries;
};
#endif

276
src/tools/nav_export/sgb.h Normal file
View file

@ -0,0 +1,276 @@
#ifndef _SGB_H
#define _SGB_H
#include <cstring>
#include <memory>
#include <cstdint>
#include <iostream>
#include <vector>
#include <map>
#include <string>
#include "vec3.h"
// garbage to skip model loading
extern bool noObj;
//
// ported from https://github.com/ufx/SaintCoinach/blob/master/SaintCoinach/Graphics/Sgb/SgbDataType.cs
struct SGB_FILE;
struct SGB_HEADER;
struct SGB_MODEL_ENTRY;
struct SGB_MODEL_HEADER;
struct SGB_GROUP;
struct SGB_GROUP_HEADER;
enum SgbDataType :
uint32_t
{
Unknown0008 = 0x0008,
Group = 0x0100,
};
enum SgbGroupEntryType :
uint32_t
{
Model = 0x01,
Gimmick = 0x06,
};
struct SGB_GROUP_HEADER
{
SgbDataType type;
int32_t nameOffset;
uint32_t unknown08;
uint32_t unknown0C;
uint32_t unknown10;
uint32_t unknown14;
uint32_t unknown18;
uint32_t unknown1C;
int32_t entryCount;
uint32_t unknown24;
uint32_t unknown28;
uint32_t unknown2C;
uint32_t unknown30;
uint32_t unknown34;
uint32_t unknown38;
uint32_t unknown3C;
uint32_t unknown40;
uint32_t unknown44;
};
struct SGB_GROUP1C_HEADER
{
SgbDataType type;
int32_t nameOffset;
uint32_t unknown08;
int32_t entryCount;
uint32_t unknown14;
int32_t modelFileOffset;
vec3 unknownFloat3;
vec3 unknownFloat3_2;
int32_t stateOffset;
int32_t modelFileOffset2;
uint32_t unknown3;
float unknown4;
int32_t nameOffset2;
vec3 unknownFloat3_3;
};
struct SGB_GROUP1C_ENTRY
{
uint32_t unk;
uint32_t unk2;
int32_t nameOffset;
uint32_t index;
uint32_t unk3;
int32_t modelFileOffset;
};
struct SGB_GROUP_ENTRY
{
public:
char* m_buf;
uint32_t m_offset;
SGB_GROUP_ENTRY()
{
m_buf = nullptr;
m_offset = 0;
};
SGB_GROUP_ENTRY( char* buf, uint32_t offset )
{
m_buf = buf;
m_offset = offset;
};
virtual ~SGB_GROUP_ENTRY()
{
};
};
struct SGB_ENTRY_HEADER
{
SgbGroupEntryType type;
uint32_t unknown2;
int32_t nameOffset;
vec3 translation;
vec3 rotation;
vec3 scale;
};
struct SGB_MODEL_HEADER :
public SGB_ENTRY_HEADER
{
int32_t modelFileOffset;
int32_t collisionFileOffset;
};
struct SGB_MODEL_ENTRY :
public SGB_GROUP_ENTRY
{
SGB_MODEL_HEADER header;
SgbGroupEntryType type;
std::string name;
std::string modelFileName;
std::string collisionFileName;
SGB_MODEL_ENTRY( char* buf, uint32_t offset, SgbGroupEntryType type )
{
this->type = type;
header = *reinterpret_cast< SGB_MODEL_HEADER* >( buf + offset );
name = std::string( buf + offset + header.nameOffset );
modelFileName = std::string( buf + offset + header.modelFileOffset );
collisionFileName = std::string( buf + offset + header.collisionFileOffset );
}
};
struct SGB_GROUP
{
SGB_GROUP_HEADER header;
std::string name;
SGB_FILE* parent;
std::vector< std::shared_ptr< SGB_GROUP_ENTRY > > entries;
SGB_GROUP( char* buf, SGB_FILE* file, std::set< std::string >* offset1cObjects, uint32_t fileSize, uint32_t offset, bool isOffset1C = false )
{
parent = file;
if( isOffset1C )
{
auto header1c = *reinterpret_cast< SGB_GROUP1C_HEADER* >( buf + offset );
auto entriesOffset = offset + sizeof( header1c );
auto entryCount = header1c.entryCount;
for( auto i = 0; i < entryCount; ++i )
{
auto entryOffset = entriesOffset + ( i * 24 );
auto entry = *reinterpret_cast< SGB_GROUP1C_ENTRY* >( buf + entryOffset );
std::string entryModelFile( buf + entryOffset + entry.modelFileOffset + 9 );
if( entryModelFile.find( ".sgb" ) != std::string::npos )
{
offset1cObjects->emplace( entryModelFile );
}
}
return;
}
auto entriesOffset = offset + sizeof( header );
header = *reinterpret_cast< SGB_GROUP_HEADER* >( buf + offset );
name = std::string( buf + offset + header.nameOffset );
for( auto i = 0; i < header.entryCount; ++i )
{
auto entryOffset = entriesOffset + *reinterpret_cast< uint32_t* >( buf + ( entriesOffset + ( i * 4 ) ) );
if( entryOffset > fileSize )
throw std::runtime_error( "SGB_GROUP entry offset was larger than SGB file size!" );
auto type = *reinterpret_cast< uint32_t* >( buf + entryOffset );
if( type == SgbGroupEntryType::Model || type == SgbGroupEntryType::Gimmick )
{
entries.push_back( std::make_shared< SGB_MODEL_ENTRY >( buf, entryOffset, ( SgbGroupEntryType )type ) );
}
else
{
// std::cout << "\t\tUnknown SGB entry! Group: " << name << " type: " << type << " index: " << i << " entryOffset: " << entryOffset << "\n";
}
}
}
};
struct SGB_HEADER
{
char magic[4]; // SGB1
uint32_t fileSize;
uint32_t unknown1;
char magic2[4]; // SCN1
uint32_t unknown10;
int32_t sharedOffset;
uint32_t unknown18;
int32_t offset1C;
uint32_t unknown20;
uint32_t unknown24;
uint32_t unknown28;
uint32_t unknown2C;
uint32_t unknown30;
uint32_t unknown34;
uint32_t unknown38;
uint32_t unknown3C;
uint32_t unknown40;
uint32_t unknown44;
uint32_t unknown48;
uint32_t unknown4C;
uint32_t unknown50;
uint32_t unknown54;
};
struct SGB_FILE
{
SGB_HEADER header;
std::vector< SGB_GROUP > entries;
std::set< std::string > offset1cObjects;
SGB_FILE()
{
memset( &header, 0, sizeof( header ) );
}
SGB_FILE( char* buf )
{
constexpr int baseOffset = 0x14;
header = *reinterpret_cast< SGB_HEADER* >( buf );
if( strncmp( &header.magic[ 0 ], "SGB1", 4 ) != 0 || strncmp( &header.magic2[ 0 ], "SCN1", 4 ) != 0 )
throw std::runtime_error( "Unable to load SGB File!" );
try
{
auto group = SGB_GROUP( buf, this, &offset1cObjects, header.fileSize, baseOffset + header.sharedOffset );
entries.push_back( group );
auto group2 = SGB_GROUP( buf, this, &offset1cObjects, header.fileSize, baseOffset+ header.offset1C, true );
entries.push_back( group2 );
}
catch( std::exception& e )
{
std::cout << ( std::string( e.what() ) + "\n" );
}
};
};
#endif // !_SGB_H

View file

@ -0,0 +1,108 @@
#ifndef THREADPOOL_H
#define THREADPOOL_H
#include <atomic>
#include <condition_variable>
#include <deque>
#include <functional>
#include <future>
#include <memory>
#include <mutex>
#include <thread>
// credit to
// https://riptutorial.com/cplusplus/example/15806/create-a-simple-thread-pool
class ThreadPool
{
public:
ThreadPool()
{
}
~ThreadPool()
{
complete();
}
void addWorkers( unsigned int num )
{
std::unique_lock lock( m_mutex );
m_runFlag = true;
if( num == 0 )
num = std::thread::hardware_concurrency() - 1;
for( auto i = 0; i < num; ++i )
{
m_workers.push_back( std::async( std::launch::async, [this]{ run(); } ) );
}
}
template< class Func, class Ret = std::result_of_t< Func&() > >
std::future< Ret > queue( Func&& f )
{
std::packaged_task< Ret() > task( std::forward< Func >( f ) );
auto ret = task.get_future();
{
std::unique_lock lock( m_mutex );
m_pendingJobs.emplace_back( std::move( task ) );
}
m_cv.notify_one();
return ret;
}
void cancel()
{
{
std::unique_lock lock( m_mutex );
m_pendingJobs.clear();
}
complete();
}
bool complete()
{
{
std::unique_lock lock( m_mutex );
for( auto&& worker : m_workers )
{
m_pendingJobs.push_back( {} );
}
}
m_cv.notify_all();
m_workers.clear();
return true;
}
private:
void run()
{
while( 1 )
{
std::packaged_task< void() > func;
{
std::unique_lock lock( m_mutex );
if( m_pendingJobs.empty() )
{
m_cv.wait( lock, [&](){ return !m_pendingJobs.empty(); } );
}
func = std::move( m_pendingJobs.front() );
m_pendingJobs.pop_front();
}
if( !func.valid() )
{
return;
}
func();
}
}
bool m_runFlag{ true };
std::mutex m_mutex;
std::condition_variable m_cv;
std::deque< std::packaged_task< void() > > m_pendingJobs;
std::vector< std::future< void > > m_workers;
};
#endif

View file

@ -0,0 +1,34 @@
#ifndef _VEC3_H
#define _VEC3_H
#include <cstdint>
#include "matrix4.h"
struct vec3
{
float x, y, z;
vec3()
{
x = 0.0f;
y = 0.0f;
z = 0.0f;
}
vec3( float x, float y, float z )
{
this->x = x;
this->y = y;
this->z = z;
};
};
static vec3 operator*( const vec3& lhs, const matrix4& rhs )
{
vec3 ret;
ret.x = rhs( 0, 0 ) * lhs.x + rhs( 0, 1 ) * lhs.y + rhs( 0, 2 ) * lhs.z;
ret.y = rhs( 1, 0 ) * lhs.x + rhs( 1, 1 ) * lhs.y + rhs( 1, 2 ) * lhs.z;
ret.z = rhs( 2, 0 ) * lhs.x + rhs( 2, 1 ) * lhs.y + rhs( 2, 2 ) * lhs.z;
return ret;
};
#endif