1
Fork 0
mirror of https://github.com/SapphireServer/Sapphire.git synced 2025-04-30 08:07:46 +00:00

add headless navmesh exporting

This commit is contained in:
NotAdam 2019-01-26 18:45:37 +11:00
parent 3d88447968
commit c608d9e629
4 changed files with 674 additions and 456 deletions

View file

@ -0,0 +1,572 @@
#include "TiledNavmeshGenerator.h"
#include <experimental/filesystem>
#include <cstring>
#include <recastnavigation/Detour/Include/DetourNavMeshBuilder.h>
namespace fs = std::experimental::filesystem;
inline unsigned int nextPow2( uint32_t v )
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
inline unsigned int ilog2( uint32_t v )
{
uint32_t r;
uint32_t shift;
r = (v > 0xffff) << 4; v >>= r;
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
bool TiledNavmeshGenerator::init( const std::string& path )
{
if( !fs::exists( path ) )
throw std::runtime_error( "what" );
// ignore logging/bullshit/etc
m_ctx = new rcContext( false );
printf( "[Navmesh] loading obj: %s\n", path.substr( path.find( "pcb_export" ) - 1 ).c_str() );
m_mesh = new rcMeshLoaderObj;
assert( m_mesh );
if( !m_mesh->load( path ) )
{
printf( "[Navmesh] Failed to allocate rcMeshLoaderObj\n" );
return false;
}
rcCalcBounds( m_mesh->getVerts(), m_mesh->getVertCount(), m_meshBMin, m_meshBMax );
m_chunkyMesh = new rcChunkyTriMesh;
assert( m_chunkyMesh );
if( !rcCreateChunkyTriMesh( m_mesh->getVerts(), m_mesh->getTris(), m_mesh->getTriCount(), 256, m_chunkyMesh ) )
{
printf( "[Navmesh] buildTiledNavigation: Failed to build chunky mesh.\n" );
return false;
}
// todo: load some bullshit settings from exd
int gw = 0, gh = 0;
rcCalcGridSize( m_meshBMin, m_meshBMax, m_cellSize, &gw, &gh );
auto ts = static_cast< uint32_t >( m_tileSize );
const uint32_t tw = (gw + ts-1) / ts;
const uint32_t th = (gh + ts-1) / ts;
printf( "[Navmesh] - Tiles %d x %d\n", tw, th );
int tileBits = rcMin( ( int ) ilog2( nextPow2( tw * th ) ), 14 );
if ( tileBits > 14 ) tileBits = 14;
int polyBits = 22 - tileBits;
m_maxTiles = 1 << tileBits;
m_maxPolysPerTile = 1 << polyBits;
printf( "[Navmesh] - %.1fK verts, %.1fK tris\n", m_mesh->getVertCount() / 1000.0f, m_mesh->getTriCount() / 1000.0f );
return true;
}
TiledNavmeshGenerator::~TiledNavmeshGenerator()
{
delete m_mesh;
delete m_chunkyMesh;
}
void TiledNavmeshGenerator::saveNavmesh( const std::string& name )
{
assert( m_navMesh );
// fuck this gay earth
auto mesh = const_cast< const dtNavMesh* >( m_navMesh );
auto dir = fs::current_path().string() + "/pcb_export/" + name + "/";
auto fileName = dir + name + ".nav";
fs::create_directories( dir );
FILE* fp = fopen( fileName.c_str(), "wb" );
if( !fp )
return;
// Store header.
NavMeshSetHeader header;
header.magic = NAVMESHSET_MAGIC;
header.version = NAVMESHSET_VERSION;
header.numTiles = 0;
for( int i = 0; i < mesh->getMaxTiles(); ++i )
{
auto tile = mesh->getTile( i );
if( !tile || !tile->header || !tile->dataSize )
continue;
header.numTiles++;
}
memcpy( &header.params, mesh->getParams(), sizeof( dtNavMeshParams ) );
fwrite( &header, sizeof( NavMeshSetHeader ), 1, fp );
// Store tiles.
for( int i = 0; i < mesh->getMaxTiles(); ++i )
{
auto tile = mesh->getTile( i );
if( !tile || !tile->header || !tile->dataSize )
continue;
NavMeshTileHeader tileHeader;
tileHeader.tileRef = mesh->getTileRef( tile );
tileHeader.dataSize = tile->dataSize;
fwrite( &tileHeader, sizeof( tileHeader ), 1, fp );
fwrite( tile->data, tile->dataSize, 1, fp );
}
fclose( fp );
auto pos = fileName.find( "pcb_export" );
fileName = fileName.substr( pos - 1 );
printf( "[Navmesh] Saved navmesh to '%s'\n", fileName.c_str() );
}
bool TiledNavmeshGenerator::buildNavmesh()
{
assert( m_mesh );
m_navMesh = dtAllocNavMesh();
if( !m_navMesh )
{
printf( "[Navmesh] buildTiledNavigation: Could not allocate navmesh.\n" );
return false;
}
dtNavMeshParams params{};
rcVcopy( params.orig, m_meshBMin );
params.tileWidth = m_tileSize * m_cellSize;
params.tileHeight = m_tileSize * m_cellSize;
params.maxTiles = m_maxTiles;
params.maxPolys = m_maxPolysPerTile;
dtStatus status;
status = m_navMesh->init( &params );
if( dtStatusFailed( status ) )
{
printf( "[Navmesh] buildTiledNavigation: Could not init navmesh.\n" );
return false;
}
m_navQuery = dtAllocNavMeshQuery();
assert( m_navQuery );
status = m_navQuery->init( m_navMesh, 2048 );
if( dtStatusFailed( status ) )
{
printf( "[Navmesh] buildTiledNavigation: Could not init Detour navmesh query\n" );
return false;
}
// todo: duplicated from above, we can probably cache all this and only do it once
int gw = 0, gh = 0;
rcCalcGridSize( m_meshBMin, m_meshBMax, m_cellSize, &gw, &gh );
auto ts = static_cast< uint32_t >( m_tileSize );
const int tw = ( gw + ts - 1 ) / ts;
const int th = ( gh + ts - 1 ) / ts;
const float tcs = m_tileSize * m_cellSize;
for( int y = 0; y < th; y++ )
{
for( int x = 0; x < tw; x++ )
{
m_lastBuiltTileBmin[ 0 ] = m_meshBMin[ 0 ] + x * tcs;
m_lastBuiltTileBmin[ 1 ] = m_meshBMin[ 1 ];
m_lastBuiltTileBmin[ 2 ] = m_meshBMin[ 2 ] + y * tcs;
m_lastBuiltTileBmax[ 0 ] = m_meshBMin[ 0 ] + ( x + 1 ) * tcs;
m_lastBuiltTileBmax[ 1 ] = m_meshBMax[ 1 ];
m_lastBuiltTileBmax[ 2 ] = m_meshBMin[ 2 ] + ( y + 1 ) * tcs;
int dataSize = 0;
unsigned char* data = buildTileMesh( x, y, m_lastBuiltTileBmin, m_lastBuiltTileBmax, dataSize );
if( data )
{
// Remove any previous data (navmesh owns and deletes the data).
m_navMesh->removeTile( m_navMesh->getTileRefAt( x, y, 0 ), nullptr, nullptr );
// Let the navmesh own the data.
status = m_navMesh->addTile( data, dataSize, DT_TILE_FREE_DATA, 0, nullptr );
if( dtStatusFailed( status ) )
{
dtFree( data );
}
}
}
}
return true;
}
unsigned char* TiledNavmeshGenerator::buildTileMesh( const int tx, const int ty, const float* bmin, const float* bmax,
int& dataSize )
{
const float* verts = m_mesh->getVerts();
const int nverts = m_mesh->getVertCount();
const int ntris = m_mesh->getTriCount();
// Init build configuration from GUI
memset( &m_cfg, 0, sizeof( m_cfg ) );
m_cfg.cs = m_cellSize;
m_cfg.ch = m_cellHeight;
m_cfg.walkableSlopeAngle = m_agentMaxSlope;
m_cfg.walkableHeight = static_cast< int >( ceilf( m_agentHeight / m_cfg.ch ) );
m_cfg.walkableClimb = static_cast< int >( floorf( m_agentMaxClimb / m_cfg.ch ) );
m_cfg.walkableRadius = static_cast< int >( ceilf( m_agentRadius / m_cfg.cs ) );
m_cfg.maxEdgeLen = static_cast< int >( m_edgeMaxLen / m_cellSize );
m_cfg.maxSimplificationError = m_edgeMaxError;
m_cfg.minRegionArea = static_cast< int >( rcSqr( m_regionMinSize ) ); // Note: area = size*size
m_cfg.mergeRegionArea = static_cast< int >( rcSqr( m_regionMergeSize ) ); // Note: area = size*size
m_cfg.maxVertsPerPoly = static_cast< int >( m_vertsPerPoly );
m_cfg.tileSize = static_cast< int >( m_tileSize );
m_cfg.borderSize = m_cfg.walkableRadius + 3; // Reserve enough padding.
m_cfg.width = m_cfg.tileSize + m_cfg.borderSize*2;
m_cfg.height = m_cfg.tileSize + m_cfg.borderSize*2;
m_cfg.detailSampleDist = m_detailSampleDist < 0.9f ? 0 : m_cellSize * m_detailSampleDist;
m_cfg.detailSampleMaxError = m_cellHeight * m_detailSampleMaxError;
// Expand the heighfield bounding box by border size to find the extents of geometry we need to build this tile.
//
// This is done in order to make sure that the navmesh tiles connect correctly at the borders,
// and the obstacles close to the border work correctly with the dilation process.
// No polygons (or contours) will be created on the border area.
//
// IMPORTANT!
//
// :''''''''':
// : +-----+ :
// : | | :
// : | |<--- tile to build
// : | | :
// : +-----+ :<-- geometry needed
// :.........:
//
// You should use this bounding box to query your input geometry.
//
// For example if you build a navmesh for terrain, and want the navmesh tiles to match the terrain tile size
// you will need to pass in data from neighbour terrain tiles too! In a simple case, just pass in all the 8 neighbours,
// or use the bounding box below to only pass in a sliver of each of the 8 neighbours.
rcVcopy( m_cfg.bmin, bmin );
rcVcopy( m_cfg.bmax, bmax );
m_cfg.bmin[ 0 ] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmin[ 2 ] -= m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[ 0 ] += m_cfg.borderSize * m_cfg.cs;
m_cfg.bmax[ 2 ] += m_cfg.borderSize * m_cfg.cs;
m_solid = rcAllocHeightfield();
if( !m_solid )
{
printf( "[Navmesh] buildNavigation: Out of memory 'solid'.\n" );
return nullptr;
}
if( !rcCreateHeightfield( m_ctx, *m_solid, m_cfg.width, m_cfg.height, m_cfg.bmin, m_cfg.bmax, m_cfg.cs, m_cfg.ch ) )
{
printf( "[Navmesh] buildNavigation: Could not create solid heightfield.\n" );
return nullptr;
}
// Allocate array that can hold triangle flags.
// If you have multiple meshes you need to process, allocate
// and array which can hold the max number of triangles you need to process.
m_triareas = new unsigned char[ m_chunkyMesh->maxTrisPerChunk ];
if( !m_triareas )
{
printf( "[Navmesh] buildNavigation: Out of memory 'm_triareas' (%d).\n", m_chunkyMesh->maxTrisPerChunk );
return nullptr;
}
float tbmin[ 2 ];
float tbmax[ 2 ];
tbmin[ 0 ] = m_cfg.bmin[ 0 ];
tbmin[ 1 ] = m_cfg.bmin[ 2 ];
tbmax[ 0 ] = m_cfg.bmax[ 0 ];
tbmax[ 1 ] = m_cfg.bmax[ 2 ];
int cid[ 512 ];// TODO: Make grow when returning too many items.
const int ncid = rcGetChunksOverlappingRect( m_chunkyMesh, tbmin, tbmax, cid, 512 );
if( !ncid )
return nullptr;
m_tileTriCount = 0;
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = m_chunkyMesh->nodes[ cid[ i ] ];
const int* ctris = &m_chunkyMesh->tris[ node.i * 3 ];
const int nctris = node.n;
m_tileTriCount += nctris;
memset( m_triareas, 0, nctris * sizeof( unsigned char ) );
rcMarkWalkableTriangles( m_ctx, m_cfg.walkableSlopeAngle, verts, nverts, ctris, nctris, m_triareas );
if( !rcRasterizeTriangles( m_ctx, verts, nverts, ctris, m_triareas, nctris, *m_solid, m_cfg.walkableClimb ) )
return nullptr;
}
delete [] m_triareas;
m_triareas = nullptr;
// Once all geometry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
rcFilterLowHangingWalkableObstacles( m_ctx, m_cfg.walkableClimb, *m_solid );
rcFilterLedgeSpans( m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid );
rcFilterWalkableLowHeightSpans( m_ctx, m_cfg.walkableHeight, *m_solid );
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
m_chf = rcAllocCompactHeightfield();
if( !m_chf )
{
printf( "[Navmesh] buildNavigation: Out of memory 'chf'." );
return nullptr;
}
if( !rcBuildCompactHeightfield( m_ctx, m_cfg.walkableHeight, m_cfg.walkableClimb, *m_solid, *m_chf ) )
{
printf( "[Navmesh] buildNavigation: Could not build compact data." );
return nullptr;
}
rcFreeHeightField(m_solid);
m_solid = nullptr;
// Erode the walkable area by agent radius.
if( !rcErodeWalkableArea( m_ctx, m_cfg.walkableRadius, *m_chf ) )
{
printf( "[Navmesh] buildNavigation: Could not erode." );
return nullptr;
}
// (Optional) Mark areas.
// const ConvexVolume* vols = m_mesh->getConvexVolumes();
// for (int i = 0; i < m_geom->getConvexVolumeCount(); ++i)
// rcMarkConvexPolyArea(m_ctx, vols[i].verts, vols[i].nverts, vols[i].hmin, vols[i].hmax, (unsigned char)vols[i].area, *m_chf);
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 martitioning methods, each with some pros and cons:
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
// 2) Monotone partioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
if( m_partitionType == SAMPLE_PARTITION_WATERSHED )
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if( !rcBuildDistanceField( m_ctx, *m_chf ) )
{
printf( "[Navmesh] buildNavigation: Could not build distance field." );
return nullptr;
}
// Partition the walkable surface into simple regions without holes.
if( !rcBuildRegions( m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea ) )
{
printf( "[Navmesh] buildNavigation: Could not build watershed regions." );
return nullptr;
}
}
else if( m_partitionType == SAMPLE_PARTITION_MONOTONE )
{
// Partition the walkable surface into simple regions without holes.
// Monotone partitioning does not need distancefield.
if( !rcBuildRegionsMonotone( m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea, m_cfg.mergeRegionArea ) )
{
printf( "[Navmesh] buildNavigation: Could not build monotone regions." );
return nullptr;
}
}
else // SAMPLE_PARTITION_LAYERS
{
// Partition the walkable surface into simple regions without holes.
if( !rcBuildLayerRegions( m_ctx, *m_chf, m_cfg.borderSize, m_cfg.minRegionArea ) )
{
printf( "[Navmesh] buildNavigation: Could not build layer regions." );
return nullptr;
}
}
// Create contours.
m_cset = rcAllocContourSet();
if( !m_cset )
{
printf( "[Navmesh] buildNavigation: Out of memory 'cset'." );
return nullptr;
}
if( !rcBuildContours( m_ctx, *m_chf, m_cfg.maxSimplificationError, m_cfg.maxEdgeLen, *m_cset ) )
{
printf( "[Navmesh] buildNavigation: Could not create contours." );
return nullptr;
}
if( m_cset->nconts == 0 )
{
return nullptr;
}
// Build polygon navmesh from the contours.
m_pmesh = rcAllocPolyMesh();
if( !m_pmesh )
{
printf( "[Navmesh] buildNavigation: Out of memory 'pmesh'." );
return nullptr;
}
if( !rcBuildPolyMesh( m_ctx, *m_cset, m_cfg.maxVertsPerPoly, *m_pmesh ) )
{
printf( "[Navmesh] buildNavigation: Could not triangulate contours." );
return nullptr;
}
// Build detail mesh.
m_dmesh = rcAllocPolyMeshDetail();
if( !m_dmesh )
{
printf( "[Navmesh] buildNavigation: Out of memory 'dmesh'." );
return nullptr;
}
if ( !rcBuildPolyMeshDetail( m_ctx, *m_pmesh, *m_chf,
m_cfg.detailSampleDist, m_cfg.detailSampleMaxError,
*m_dmesh ) )
{
printf( "[Navmesh] buildNavigation: Could build polymesh detail." );
return nullptr;
}
rcFreeCompactHeightfield( m_chf );
rcFreeContourSet( m_cset );
m_chf = nullptr;
m_cset = nullptr;
unsigned char* navData = 0;
int navDataSize = 0;
if( m_cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON )
{
if( m_pmesh->nverts >= 0xffff )
{
// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
printf( "[Navmesh] Too many vertices per tile %d (max: %d).", m_pmesh->nverts, 0xffff );
return nullptr;
}
// Update poly flags from areas.
for (int i = 0; i < m_pmesh->npolys; ++i)
{
if (m_pmesh->areas[ i ] == RC_WALKABLE_AREA)
m_pmesh->areas[ i ] = SAMPLE_POLYAREA_GROUND;
if (m_pmesh->areas[ i ] == SAMPLE_POLYAREA_GROUND ||
m_pmesh->areas[ i ] == SAMPLE_POLYAREA_GRASS ||
m_pmesh->areas[ i ] == SAMPLE_POLYAREA_ROAD)
{
m_pmesh->flags[ i ] = SAMPLE_POLYFLAGS_WALK;
}
else if (m_pmesh->areas[ i ] == SAMPLE_POLYAREA_WATER)
{
m_pmesh->flags[ i ] = SAMPLE_POLYFLAGS_SWIM;
}
else if (m_pmesh->areas[ i ] == SAMPLE_POLYAREA_DOOR)
{
m_pmesh->flags[ i ] = SAMPLE_POLYFLAGS_WALK | SAMPLE_POLYFLAGS_DOOR;
}
}
dtNavMeshCreateParams params;
memset( &params, 0, sizeof( params ) );
params.verts = m_pmesh->verts;
params.vertCount = m_pmesh->nverts;
params.polys = m_pmesh->polys;
params.polyAreas = m_pmesh->areas;
params.polyFlags = m_pmesh->flags;
params.polyCount = m_pmesh->npolys;
params.nvp = m_pmesh->nvp;
params.detailMeshes = m_dmesh->meshes;
params.detailVerts = m_dmesh->verts;
params.detailVertsCount = m_dmesh->nverts;
params.detailTris = m_dmesh->tris;
params.detailTriCount = m_dmesh->ntris;
params.offMeshConVerts = nullptr;
params.offMeshConRad = nullptr;
params.offMeshConDir = nullptr;
params.offMeshConAreas = nullptr;
params.offMeshConFlags = nullptr;
params.offMeshConUserID = nullptr;
params.offMeshConCount = 0;
params.walkableHeight = m_agentHeight;
params.walkableRadius = m_agentRadius;
params.walkableClimb = m_agentMaxClimb;
params.tileX = tx;
params.tileY = ty;
params.tileLayer = 0;
rcVcopy( params.bmin, m_pmesh->bmin );
rcVcopy( params.bmax, m_pmesh->bmax );
params.cs = m_cfg.cs;
params.ch = m_cfg.ch;
params.buildBvTree = true;
if( !dtCreateNavMeshData( &params, &navData, &navDataSize ) )
{
printf( "[Navmesh] Could not build Detour navmesh." );
return nullptr;
}
}
rcFreePolyMesh( m_pmesh );
rcFreePolyMeshDetail( m_dmesh );
m_pmesh = nullptr;
m_dmesh = nullptr;
dataSize = navDataSize;
return navData;
}

View file

@ -3,7 +3,7 @@
#include <string>
#include <cassert>
#include <experimental/filesystem>
#include <cmath>
#include "ext/MeshLoaderObj.h"
#include "ext/ChunkyTriMesh.h"
@ -12,147 +12,112 @@
#include "recastnavigation/Detour/Include/DetourNavMeshQuery.h"
#include "recastnavigation/Recast/Include/Recast.h"
namespace fs = std::experimental::filesystem;
class TiledNavmeshGenerator
{
public:
enum SamplePartitionType
{
SAMPLE_PARTITION_WATERSHED,
SAMPLE_PARTITION_MONOTONE,
SAMPLE_PARTITION_LAYERS,
};
enum SamplePolyAreas
{
SAMPLE_POLYAREA_GROUND,
SAMPLE_POLYAREA_WATER,
SAMPLE_POLYAREA_ROAD,
SAMPLE_POLYAREA_DOOR,
SAMPLE_POLYAREA_GRASS,
SAMPLE_POLYAREA_JUMP,
};
enum SamplePolyFlags
{
SAMPLE_POLYFLAGS_WALK = 0x01, // Ability to walk (ground, grass, road)
SAMPLE_POLYFLAGS_SWIM = 0x02, // Ability to swim (water).
SAMPLE_POLYFLAGS_DOOR = 0x04, // Ability to move through doors.
SAMPLE_POLYFLAGS_JUMP = 0x08, // Ability to jump.
SAMPLE_POLYFLAGS_DISABLED = 0x10, // Disabled polygon
SAMPLE_POLYFLAGS_ALL = 0xffff // All abilities.
};
static const int NAVMESHSET_MAGIC = 'M'<<24 | 'S'<<16 | 'E'<<8 | 'T'; //'MSET';
static const int NAVMESHSET_VERSION = 1;
struct NavMeshSetHeader
{
int magic;
int version;
int numTiles;
dtNavMeshParams params;
};
struct NavMeshTileHeader
{
dtTileRef tileRef;
int dataSize;
};
TiledNavmeshGenerator() = default;
~TiledNavmeshGenerator();
bool init( const std::string& path );
unsigned char* buildTileMesh( const int tx, const int ty, const float* bmin, const float* bmax, int& dataSize );
bool buildNavmesh();
void saveNavmesh( const std::string& name );
private:
rcConfig m_cfg;
rcMeshLoaderObj* m_mesh;
rcChunkyTriMesh* m_chunkyMesh;
rcContext* m_ctx;
dtNavMesh* m_navMesh;
dtNavMeshQuery* m_navQuery;
rcHeightfield* m_solid;
rcContourSet* m_cset;
rcPolyMesh* m_pmesh;
rcPolyMeshDetail* m_dmesh;
rcCompactHeightfield* m_chf;
float m_meshBMin[ 3 ];
float m_meshBMax[ 3 ];
float m_tileSize = 160.f;
float m_cellSize = 0.2f;
unsigned char* m_triareas;
int m_maxTiles = 0;
int m_maxPolysPerTile = 0;
inline unsigned int nextPow2( uint32_t v )
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
int m_tileTriCount = 0;
inline unsigned int ilog2( uint32_t v )
{
uint32_t r;
uint32_t shift;
r = (v > 0xffff) << 4; v >>= r;
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
r |= (v >> 1);
return r;
}
int m_partitionType = SamplePartitionType::SAMPLE_PARTITION_WATERSHED;
// options
float m_meshBMin[ 3 ];
float m_meshBMax[ 3 ];
public:
explicit TiledNavmeshGenerator( const std::string& path )
{
if( !fs::exists( path ) )
throw std::runtime_error( "what" );
float m_lastBuiltTileBmin[3];
float m_lastBuiltTileBmax[3];
printf( "[Navmesh] loading obj: %s\n", path.c_str() );
float m_tileSize = 160.f;
float m_cellSize = 0.2f;
float m_cellHeight = 0.2f;
m_mesh = new rcMeshLoaderObj;
assert( m_mesh );
float m_agentMaxSlope = 56.f;
float m_agentHeight = 2.f;
float m_agentMaxClimb = 0.6f;
float m_agentRadius = 0.5f;
if( !m_mesh->load( path ) )
{
printf( "[Navmesh] Failed to allocate rcMeshLoaderObj\n" );
return;
}
float m_edgeMaxLen = 12.f;
float m_edgeMaxError = 1.4f;
rcCalcBounds( m_mesh->getVerts(), m_mesh->getVertCount(), m_meshBMin, m_meshBMax );
float m_regionMinSize = 8.f;
float m_regionMergeSize = 20.f;
m_chunkyMesh = new rcChunkyTriMesh;
assert( m_chunkyMesh );
if( !rcCreateChunkyTriMesh( m_mesh->getVerts(), m_mesh->getTris(), m_mesh->getTriCount(), 256, m_chunkyMesh ) )
{
printf( "[Navmesh] buildTiledNavigation: Failed to build chunky mesh.\n" );
return;
}
printf( "[Navmesh] loaded obj, verts: %i tris: %i\n", m_mesh->getVertCount(), m_mesh->getTriCount() );
// todo: load some bullshit settings from exd
int gw = 0, gh = 0;
rcCalcGridSize( m_meshBMin, m_meshBMax, m_cellSize, &gw, &gh );
auto ts = static_cast< uint32_t >( m_tileSize );
const uint32_t tw = (gw + ts-1) / ts;
const uint32_t th = (gh + ts-1) / ts;
printf( "[Navmesh] Tiles %d x %d\n", tw, th );
int tileBits = rcMin((int)ilog2(nextPow2(tw*th)), 14);
if (tileBits > 14) tileBits = 14;
int polyBits = 22 - tileBits;
m_maxTiles = 1 << tileBits;
m_maxPolysPerTile = 1 << polyBits;
printf( "[Navmesh] Max Tiles: %d\tMax Polys: %d\n", m_maxTiles, m_maxPolysPerTile );
}
bool buildNavmesh()
{
assert( m_mesh );
m_navMesh = dtAllocNavMesh();
if( !m_navMesh )
{
printf( "[Navmesh] buildTiledNavigation: Could not allocate navmesh.\n" );
return false;
}
dtNavMeshParams params{};
rcVcopy( params.orig, m_meshBMin );
params.tileWidth = m_tileSize * m_cellSize;
params.tileHeight = m_tileSize * m_cellSize;
params.maxTiles = m_maxTiles;
params.maxPolys = m_maxPolysPerTile;
dtStatus status;
status = m_navMesh->init( &params );
if( dtStatusFailed( status ) )
{
printf( "[Navigation] buildTiledNavigation: Could not init navmesh.\n" );
return false;
}
m_navQuery = dtAllocNavMeshQuery();
assert( m_navQuery );
status = m_navQuery->init( m_navMesh, 2048 );
if( dtStatusFailed( status ) )
{
printf( "[Navigation] buildTiledNavigation: Could not init Detour navmesh query\n" );
return false;
}
}
~TiledNavmeshGenerator()
{
delete m_mesh;
delete m_chunkyMesh;
}
float m_vertsPerPoly = 6.f;
float m_detailSampleDist = 6.f;
float m_detailSampleMaxError = 1.f;
};

View file

@ -11,6 +11,10 @@
#include "exporter.h"
#include "nav/TiledNavmeshGenerator.h"
#include <experimental/filesystem>
namespace fs = std::experimental::filesystem;
class NavmeshExporter
{
public:
@ -18,10 +22,16 @@ public:
{
auto start = std::chrono::high_resolution_clock::now();
auto dir = std::experimental::filesystem::current_path().string() + "/pcb_export/" + zone.name + "/";
auto dir = fs::current_path().string() + "/pcb_export/" + zone.name + "/";
auto fileName = dir + zone.name + ".obj";
TiledNavmeshGenerator gen( fileName );
TiledNavmeshGenerator gen;
if( !gen.init( fileName ) )
{
printf( "[Navmesh] failed to init TiledNavmeshGenerator for file '%s'\n", fileName.c_str() );
return;
}
if( !gen.buildNavmesh() )
{
@ -29,6 +39,8 @@ public:
return;
}
gen.saveNavmesh( zone.name );
auto end = std::chrono::high_resolution_clock::now();
printf( "[Navmesh] Finished exporting %s in %lu ms\n",
fileName.c_str(),
@ -39,336 +51,5 @@ public:
{
}
private:
/*/
static unsigned char* buildTileMesh( const ExportedGroup& group, int tx, int ty )
{
unsigned char* navData;
rcConfig cfg;
cfg.ch = 0.2f;
cfg.cs = 0.2f;
cfg.walkableHeight = 2.f;
cfg.walkableRadius = 0.5;
cfg.walkableClimb = 0.6;
cfg.walkableSlopeAngle = 58.f;
cfg.minRegionArea = 8.0f;
cfg.mergeRegionArea = 20.f;
cfg.maxEdgeLen = 12.f;
cfg.maxSimplificationError = 1.4f;
cfg.maxVertsPerPoly = 6.f;
cfg.detailSampleDist = 6.f;
cfg.detailSampleMaxError = 1.f;
cfg.tileSize = 160.f;
cfg.walkableHeight = (int)ceilf( cfg.walkableHeight / cfg.ch );
cfg.walkableClimb = (int)floorf( cfg.walkableClimb / cfg.ch );
cfg.walkableRadius = (int)ceilf( cfg.walkableRadius / cfg.cs );
cfg.maxEdgeLen = (int)( cfg.maxEdgeLen / cfg.cs );
cfg.minRegionArea = (int)rcSqr( cfg.minRegionArea ); // Note: area = size*size
cfg.mergeRegionArea = (int)rcSqr( cfg.mergeRegionArea ); // Note: area = size*size
cfg.borderSize = cfg.walkableRadius + 3; // Reserve enough padding.
cfg.width = cfg.tileSize + cfg.borderSize*2;
cfg.height = cfg.tileSize + cfg.borderSize*2;
cfg.detailSampleDist = cfg.detailSampleDist < 0.9f ? 0 : cfg.cs * cfg.detailSampleDist;
cfg.detailSampleMaxError = cfg.ch * cfg.detailSampleMaxError;
rcContext ctx;
auto hf = rcAllocHeightfield();
auto chf = rcAllocCompactHeightfield();
auto cs = rcAllocContourSet();
auto pmesh = rcAllocPolyMesh();
auto pdetailmesh = rcAllocPolyMeshDetail();
std::vector< float > verts;
std::vector< int > indices;
int i = 0;
int numIndices = 0;
for( const auto& model : group.models )
{
for( const auto& mesh : model.second.meshes )
{
auto size = mesh.verts.size();
rcCalcBounds( mesh.verts.data(), size / 3, &cfg.bmin[0], &cfg.bmax[0] );
verts.reserve( verts.size() + size );
memcpy( &verts[i], mesh.verts.data(), size );
i += size;
size = mesh.indices.size();
indices.reserve( indices.size() + size );
for( auto j = 0; j < mesh.indices.size(); j += 3 )
{
indices[j] = mesh.indices[j] + numIndices;
indices[j + 1] = mesh.indices[j + 1] + numIndices;
indices[j + 2] = mesh.indices[j + 2] + numIndices;
}
numIndices += size;
}
}
auto chunkyMesh = new rcChunkyTriMesh;
rcCreateChunkyTriMesh( &verts[0], &indices[0], verts.size() / 3, 256, chunkyMesh );
if( !rcCreateHeightfield( &ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch ) )
{
}
float tbmin[2], tbmax[2];
tbmin[0] = cfg.bmin[0];
tbmin[1] = cfg.bmin[2];
tbmax[0] = cfg.bmax[0];
tbmax[1] = cfg.bmax[2];
int cid[512];// TODO: Make grow when returning too many items.
const int ncid = rcGetChunksOverlappingRect(chunkyMesh, tbmin, tbmax, cid, 512);
if (!ncid)
return 0;
auto tileTriCount = 0;
auto triareas = new unsigned char[chunkyMesh->maxTrisPerChunk];
for (int i = 0; i < ncid; ++i)
{
const rcChunkyTriMeshNode& node = chunkyMesh->nodes[cid[i]];
const int* ctris = &chunkyMesh->tris[node.i*3];
const int nctris = node.n;
tileTriCount += nctris;
memset(triareas, 0, nctris*sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle,
&verts[0], verts.size() / 3, ctris, nctris, triareas);
if (!rcRasterizeTriangles(&ctx, &verts[0], verts.size() / 3, ctris, triareas, nctris, *hf, cfg.walkableClimb))
return 0;
}
{
delete [] triareas;
triareas = 0;
}
// Once all geometry is rasterized, we do initial pass of filtering to
// remove unwanted overhangs caused by the conservative rasterization
// as well as filter spans where the character cannot possibly stand.
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
// Compact the heightfield so that it is faster to handle from now on.
// This will result more cache coherent data as well as the neighbours
// between walkable cells will be calculated.
chf = rcAllocCompactHeightfield();
if (!chf)
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Out of memory 'chf'.");
return 0;
}
if (!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could not build compact data.");
return 0;
}
{
rcFreeHeightField(hf);
hf = 0;
}
// Erode the walkable area by agent radius.
if (!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could not erode.");
return 0;
}
// Partition the heightfield so that we can use simple algorithm later to triangulate the walkable areas.
// There are 3 martitioning methods, each with some pros and cons:
// 1) Watershed partitioning
// - the classic Recast partitioning
// - creates the nicest tessellation
// - usually slowest
// - partitions the heightfield into nice regions without holes or overlaps
// - the are some corner cases where this method creates produces holes and overlaps
// - holes may appear when a small obstacles is close to large open area (triangulation can handle this)
// - overlaps may occur if you have narrow spiral corridors (i.e stairs), this make triangulation to fail
// * generally the best choice if you precompute the nacmesh, use this if you have large open areas
// 2) Monotone partioning
// - fastest
// - partitions the heightfield into regions without holes and overlaps (guaranteed)
// - creates long thin polygons, which sometimes causes paths with detours
// * use this if you want fast navmesh generation
// 3) Layer partitoining
// - quite fast
// - partitions the heighfield into non-overlapping regions
// - relies on the triangulation code to cope with holes (thus slower than monotone partitioning)
// - produces better triangles than monotone partitioning
// - does not have the corner cases of watershed partitioning
// - can be slow and create a bit ugly tessellation (still better than monotone)
// if you have large open areas with small obstacles (not a problem if you use tiles)
// * good choice to use for tiled navmesh with medium and small sized tiles
//if (m_partitionType == SAMPLE_PARTITION_WATERSHED)
{
// Prepare for region partitioning, by calculating distance field along the walkable surface.
if (!rcBuildDistanceField(&ctx, *chf))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could not build distance field.");
return 0;
}
// Partition the walkable surface into simple regions without holes.
if (!rcBuildRegions(&ctx, *chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could not build watershed regions.");
return 0;
}
}
//else if (m_partitionType == SAMPLE_PARTITION_MONOTONE)
//{
// // Partition the walkable surface into simple regions without holes.
// // Monotone partitioning does not need distancefield.
// if (!rcBuildRegionsMonotone(&ctx, *chf, cfg.borderSize, cfg.minRegionArea, cfg.mergeRegionArea))
// {
// ctx.log(RC_LOG_ERROR, "buildNavigation: Could not build monotone regions.");
// return 0;
// }
//}
//else // SAMPLE_PARTITION_LAYERS
//{
// // Partition the walkable surface into simple regions without holes.
// if (!rcBuildLayerRegions(&ctx, *chf, cfg.borderSize, cfg.minRegionArea))
// {
// ctx.log(RC_LOG_ERROR, "buildNavigation: Could not build layer regions.");
// return 0;
// }
//}
// Create contours.
cs = rcAllocContourSet();
if (!cs)
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Out of memory 'cset'.");
return 0;
}
if (!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cs))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could not create contours.");
return 0;
}
if (cs->nconts == 0)
{
return 0;
}
// Build polygon navmesh from the contours.
pmesh = rcAllocPolyMesh();
if (!pmesh)
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Out of memory 'pmesh'.");
return 0;
}
if (!rcBuildPolyMesh(&ctx, *cs, cfg.maxVertsPerPoly, *pmesh))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could not triangulate contours.");
return 0;
}
// Build detail mesh.
pdetailmesh = rcAllocPolyMeshDetail();
if (!pdetailmesh)
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Out of memory 'dmesh'.");
return 0;
}
if (!rcBuildPolyMeshDetail(&ctx, *pmesh, *chf,
cfg.detailSampleDist, cfg.detailSampleMaxError,
*pdetailmesh))
{
ctx.log(RC_LOG_ERROR, "buildNavigation: Could build polymesh detail.");
return 0;
}
{
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cs);
cs = 0;
}
unsigned char* navData = 0;
int navDataSize = 0;
if (cfg.maxVertsPerPoly <= DT_VERTS_PER_POLYGON)
{
if (pmesh->nverts >= 0xffff)
{
// The vertex indices are ushorts, and cannot point to more than 0xffff vertices.
ctx.log(RC_LOG_ERROR, "Too many vertices per tile %d (max: %d).", pmesh->nverts, 0xffff);
return 0;
}
// Update poly flags from areas.
for (int i = 0; i < pmesh->npolys; ++i)
{
//pmesh->flags[i] = sampleAreaToFlags(pmesh->areas[i]);
}
dtNavMeshCreateParams params;
memset(&params, 0, sizeof(params));
params.verts = pmesh->verts;
params.vertCount = pmesh->nverts;
params.polys = pmesh->polys;
params.polyAreas = pmesh->areas;
params.polyFlags = pmesh->flags;
params.polyCount = pmesh->npolys;
params.nvp = pmesh->nvp;
params.detailMeshes = pdetailmesh->meshes;
params.detailVerts = pdetailmesh->verts;
params.detailVertsCount = pdetailmesh->nverts;
params.detailTris = pdetailmesh->tris;
params.detailTriCount = pdetailmesh->ntris;
params.offMeshConVerts = 0;
params.offMeshConRad = 0;
params.offMeshConDir = 0;
params.offMeshConAreas = 0;
params.offMeshConFlags = 0;
params.offMeshConUserID = 0;
params.offMeshConCount = 0;
params.walkableHeight = cfg.walkableHeight;
params.walkableRadius = cfg.walkableRadius;
params.walkableClimb = cfg.walkableClimb;
params.tileX = 0;
params.tileY = 0;
params.tileLayer = 0;
rcVcopy(params.bmin, pmesh->bmin);
rcVcopy(params.bmax, pmesh->bmax);
params.cs = cfg.cs;
params.ch = cfg.ch;
params.buildBvTree = true;
if (!dtCreateNavMeshData(&params, &navData, &navDataSize))
{
ctx.log(RC_LOG_ERROR, "Could not build Detour navmesh.");
return 0;
}
}
auto tileMemUsage = navDataSize/1024.0f;
ctx.stopTimer(RC_TIMER_TOTAL);
// Show performance stats.
//duLogBuildTimes(*&ctx, ctx.getAccumulatedTime(RC_TIMER_TOTAL));
ctx.log(RC_LOG_PROGRESS, ">> Polymesh: %d vertices %d polygons", pmesh->nverts, pmesh->npolys);
auto tileBuildTime = ctx.getAccumulatedTime(RC_TIMER_TOTAL)/1000.0f;
auto dataSize = navDataSize;
return navData;
}
//*/
};
#endif // !OBJ_EXPORTER_H

View file

@ -51,8 +51,8 @@ public:
auto end = std::chrono::high_resolution_clock::now();
printf( "[Obj] Finished exporting %s in %lu ms\n",
fileName.c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
fileName.substr( fileName.find( "pcb_export" ) - 1 ).c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
}
static void exportGroup( const std::string& zoneName, const ExportedGroup& group )
@ -88,8 +88,8 @@ public:
auto end = std::chrono::high_resolution_clock::now();
printf( "[Obj] Finished exporting %s in %lu ms\n",
fileName.c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
fileName.substr( fileName.find( "pcb_export" ) - 1 ).c_str(),
std::chrono::duration_cast< std::chrono::milliseconds >( end - start ).count() );
}
private:
static void exportGroup( const ExportedGroup& group, std::ofstream& of, int& indicesOffset, int& modelCount )