Archived
1
Fork 0

Add imgui pass

This commit is contained in:
Joshua Goins 2018-11-05 20:51:23 -05:00
parent 7ba8f776e4
commit 0d939eacdf
22 changed files with 32344 additions and 136 deletions

View file

@ -1,2 +1,3 @@
add_subdirectory(imgui)
add_subdirectory(nlohmann)
add_subdirectory(stb)

13
3rdparty/imgui/CMakeLists.txt vendored Normal file
View file

@ -0,0 +1,13 @@
add_library(imgui
src/imgui.cpp
src/imgui_demo.cpp
src/imgui_draw.cpp
src/imgui_widgets.cpp)
target_link_libraries(imgui
PRIVATE
stb)
target_include_directories(imgui
PUBLIC
include)
add_library(imgui::imgui ALIAS imgui)

72
3rdparty/imgui/include/imconfig.h vendored Normal file
View file

@ -0,0 +1,72 @@
//-----------------------------------------------------------------------------
// COMPILE-TIME OPTIONS FOR DEAR IMGUI
// Runtime options (clipboard callbacks, enabling various features, etc.) can generally be set via the ImGuiIO structure.
// You can use ImGui::SetAllocatorFunctions() before calling ImGui::CreateContext() to rewire memory allocation functions.
//-----------------------------------------------------------------------------
// A) You may edit imconfig.h (and not overwrite it when updating imgui, or maintain a patch/branch with your modifications to imconfig.h)
// B) or add configuration directives in your own file and compile with #define IMGUI_USER_CONFIG "myfilename.h"
// If you do so you need to make sure that configuration settings are defined consistently _everywhere_ dear imgui is used, which include
// the imgui*.cpp files but also _any_ of your code that uses imgui. This is because some compile-time options have an affect on data structures.
// Defining those options in imconfig.h will ensure every compilation unit gets to see the same data structure layouts.
// Call IMGUI_CHECKVERSION() from your .cpp files to verify that the data structures your files are using are matching the ones imgui.cpp is using.
//-----------------------------------------------------------------------------
#pragma once
//---- Define assertion handler. Defaults to calling assert().
//#define IM_ASSERT(_EXPR) MyAssert(_EXPR)
//#define IM_ASSERT(_EXPR) ((void)(_EXPR)) // Disable asserts
//---- Define attributes of all API symbols declarations, e.g. for DLL under Windows.
//#define IMGUI_API __declspec( dllexport )
//#define IMGUI_API __declspec( dllimport )
//---- Don't define obsolete functions/enums names. Consider enabling from time to time after updating to avoid using soon-to-be obsolete function/names.
//#define IMGUI_DISABLE_OBSOLETE_FUNCTIONS
//---- Don't implement demo windows functionality (ShowDemoWindow()/ShowStyleEditor()/ShowUserGuide() methods will be empty)
//---- It is very strongly recommended to NOT disable the demo windows during development. Please read the comments in imgui_demo.cpp.
//#define IMGUI_DISABLE_DEMO_WINDOWS
//---- Don't implement some functions to reduce linkage requirements.
//#define IMGUI_DISABLE_WIN32_DEFAULT_CLIPBOARD_FUNCTIONS // [Win32] Don't implement default clipboard handler. Won't use and link with OpenClipboard/GetClipboardData/CloseClipboard etc.
//#define IMGUI_DISABLE_WIN32_DEFAULT_IME_FUNCTIONS // [Win32] Don't implement default IME handler. Won't use and link with ImmGetContext/ImmSetCompositionWindow.
//#define IMGUI_DISABLE_FORMAT_STRING_FUNCTIONS // Don't implement ImFormatString/ImFormatStringV so you can implement them yourself if you don't want to link with vsnprintf.
//#define IMGUI_DISABLE_MATH_FUNCTIONS // Don't implement ImFabs/ImSqrt/ImPow/ImFmod/ImCos/ImSin/ImAcos/ImAtan2 wrapper so you can implement them yourself. Declare your prototypes in imconfig.h.
//#define IMGUI_DISABLE_DEFAULT_ALLOCATORS // Don't implement default allocators calling malloc()/free() to avoid linking with them. You will need to call ImGui::SetAllocatorFunctions().
//---- Include imgui_user.h at the end of imgui.h as a convenience
//#define IMGUI_INCLUDE_IMGUI_USER_H
//---- Pack colors to BGRA8 instead of RGBA8 (to avoid converting from one to another)
//#define IMGUI_USE_BGRA_PACKED_COLOR
//---- Avoid multiple STB libraries implementations, or redefine path/filenames to prioritize another version
// By default the embedded implementations are declared static and not available outside of imgui cpp files.
//#define IMGUI_STB_TRUETYPE_FILENAME "my_folder/stb_truetype.h"
//#define IMGUI_STB_RECT_PACK_FILENAME "my_folder/stb_rect_pack.h"
//#define IMGUI_DISABLE_STB_TRUETYPE_IMPLEMENTATION
//#define IMGUI_DISABLE_STB_RECT_PACK_IMPLEMENTATION
//---- Define constructor and implicit cast operators to convert back<>forth between your math types and ImVec2/ImVec4.
// This will be inlined as part of ImVec2 and ImVec4 class declarations.
/*
#define IM_VEC2_CLASS_EXTRA \
ImVec2(const MyVec2& f) { x = f.x; y = f.y; } \
operator MyVec2() const { return MyVec2(x,y); }
#define IM_VEC4_CLASS_EXTRA \
ImVec4(const MyVec4& f) { x = f.x; y = f.y; z = f.z; w = f.w; } \
operator MyVec4() const { return MyVec4(x,y,z,w); }
*/
//---- Use 32-bit vertex indices (default is 16-bit) to allow meshes with more than 64K vertices. Render function needs to support it.
//#define ImDrawIdx unsigned int
//---- Tip: You can add extra functions within the ImGui:: namespace, here or in your own headers files.
/*
namespace ImGui
{
void MyFunction(const char* name, const MyMatrix44& v);
}
*/

1974
3rdparty/imgui/include/imgui.h vendored Normal file

File diff suppressed because it is too large Load diff

1291
3rdparty/imgui/include/imgui_internal.h vendored Normal file

File diff suppressed because it is too large Load diff

8970
3rdparty/imgui/src/imgui.cpp vendored Normal file

File diff suppressed because it is too large Load diff

3589
3rdparty/imgui/src/imgui_demo.cpp vendored Normal file

File diff suppressed because it is too large Load diff

3153
3rdparty/imgui/src/imgui_draw.cpp vendored Normal file

File diff suppressed because it is too large Load diff

5725
3rdparty/imgui/src/imgui_widgets.cpp vendored Normal file

File diff suppressed because it is too large Load diff

624
3rdparty/stb/include/stb_rect_pack.h vendored Normal file
View file

@ -0,0 +1,624 @@
// stb_rect_pack.h - v0.11 - public domain - rectangle packing
// Sean Barrett 2014
//
// Useful for e.g. packing rectangular textures into an atlas.
// Does not do rotation.
//
// Not necessarily the awesomest packing method, but better than
// the totally naive one in stb_truetype (which is primarily what
// this is meant to replace).
//
// Has only had a few tests run, may have issues.
//
// More docs to come.
//
// No memory allocations; uses qsort() and assert() from stdlib.
// Can override those by defining STBRP_SORT and STBRP_ASSERT.
//
// This library currently uses the Skyline Bottom-Left algorithm.
//
// Please note: better rectangle packers are welcome! Please
// implement them to the same API, but with a different init
// function.
//
// Credits
//
// Library
// Sean Barrett
// Minor features
// Martins Mozeiko
// github:IntellectualKitty
//
// Bugfixes / warning fixes
// Jeremy Jaussaud
//
// Version history:
//
// 0.11 (2017-03-03) return packing success/fail result
// 0.10 (2016-10-25) remove cast-away-const to avoid warnings
// 0.09 (2016-08-27) fix compiler warnings
// 0.08 (2015-09-13) really fix bug with empty rects (w=0 or h=0)
// 0.07 (2015-09-13) fix bug with empty rects (w=0 or h=0)
// 0.06 (2015-04-15) added STBRP_SORT to allow replacing qsort
// 0.05: added STBRP_ASSERT to allow replacing assert
// 0.04: fixed minor bug in STBRP_LARGE_RECTS support
// 0.01: initial release
//
// LICENSE
//
// See end of file for license information.
//////////////////////////////////////////////////////////////////////////////
//
// INCLUDE SECTION
//
#ifndef STB_INCLUDE_STB_RECT_PACK_H
#define STB_INCLUDE_STB_RECT_PACK_H
#define STB_RECT_PACK_VERSION 1
#ifdef STBRP_STATIC
#define STBRP_DEF static
#else
#define STBRP_DEF extern
#endif
#ifdef __cplusplus
extern "C" {
#endif
typedef struct stbrp_context stbrp_context;
typedef struct stbrp_node stbrp_node;
typedef struct stbrp_rect stbrp_rect;
#ifdef STBRP_LARGE_RECTS
typedef int stbrp_coord;
#else
typedef unsigned short stbrp_coord;
#endif
STBRP_DEF int stbrp_pack_rects (stbrp_context *context, stbrp_rect *rects, int num_rects);
// Assign packed locations to rectangles. The rectangles are of type
// 'stbrp_rect' defined below, stored in the array 'rects', and there
// are 'num_rects' many of them.
//
// Rectangles which are successfully packed have the 'was_packed' flag
// set to a non-zero value and 'x' and 'y' store the minimum location
// on each axis (i.e. bottom-left in cartesian coordinates, top-left
// if you imagine y increasing downwards). Rectangles which do not fit
// have the 'was_packed' flag set to 0.
//
// You should not try to access the 'rects' array from another thread
// while this function is running, as the function temporarily reorders
// the array while it executes.
//
// To pack into another rectangle, you need to call stbrp_init_target
// again. To continue packing into the same rectangle, you can call
// this function again. Calling this multiple times with multiple rect
// arrays will probably produce worse packing results than calling it
// a single time with the full rectangle array, but the option is
// available.
//
// The function returns 1 if all of the rectangles were successfully
// packed and 0 otherwise.
struct stbrp_rect
{
// reserved for your use:
int id;
// input:
stbrp_coord w, h;
// output:
stbrp_coord x, y;
int was_packed; // non-zero if valid packing
}; // 16 bytes, nominally
STBRP_DEF void stbrp_init_target (stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes);
// Initialize a rectangle packer to:
// pack a rectangle that is 'width' by 'height' in dimensions
// using temporary storage provided by the array 'nodes', which is 'num_nodes' long
//
// You must call this function every time you start packing into a new target.
//
// There is no "shutdown" function. The 'nodes' memory must stay valid for
// the following stbrp_pack_rects() call (or calls), but can be freed after
// the call (or calls) finish.
//
// Note: to guarantee best results, either:
// 1. make sure 'num_nodes' >= 'width'
// or 2. call stbrp_allow_out_of_mem() defined below with 'allow_out_of_mem = 1'
//
// If you don't do either of the above things, widths will be quantized to multiples
// of small integers to guarantee the algorithm doesn't run out of temporary storage.
//
// If you do #2, then the non-quantized algorithm will be used, but the algorithm
// may run out of temporary storage and be unable to pack some rectangles.
STBRP_DEF void stbrp_setup_allow_out_of_mem (stbrp_context *context, int allow_out_of_mem);
// Optionally call this function after init but before doing any packing to
// change the handling of the out-of-temp-memory scenario, described above.
// If you call init again, this will be reset to the default (false).
STBRP_DEF void stbrp_setup_heuristic (stbrp_context *context, int heuristic);
// Optionally select which packing heuristic the library should use. Different
// heuristics will produce better/worse results for different data sets.
// If you call init again, this will be reset to the default.
enum
{
STBRP_HEURISTIC_Skyline_default=0,
STBRP_HEURISTIC_Skyline_BL_sortHeight = STBRP_HEURISTIC_Skyline_default,
STBRP_HEURISTIC_Skyline_BF_sortHeight
};
//////////////////////////////////////////////////////////////////////////////
//
// the details of the following structures don't matter to you, but they must
// be visible so you can handle the memory allocations for them
struct stbrp_node
{
stbrp_coord x,y;
stbrp_node *next;
};
struct stbrp_context
{
int width;
int height;
int align;
int init_mode;
int heuristic;
int num_nodes;
stbrp_node *active_head;
stbrp_node *free_head;
stbrp_node extra[2]; // we allocate two extra nodes so optimal user-node-count is 'width' not 'width+2'
};
#ifdef __cplusplus
}
#endif
#endif
//////////////////////////////////////////////////////////////////////////////
//
// IMPLEMENTATION SECTION
//
#ifdef STB_RECT_PACK_IMPLEMENTATION
#ifndef STBRP_SORT
#include <stdlib.h>
#define STBRP_SORT qsort
#endif
#ifndef STBRP_ASSERT
#include <assert.h>
#define STBRP_ASSERT assert
#endif
#ifdef _MSC_VER
#define STBRP__NOTUSED(v) (void)(v)
#else
#define STBRP__NOTUSED(v) (void)sizeof(v)
#endif
enum
{
STBRP__INIT_skyline = 1
};
STBRP_DEF void stbrp_setup_heuristic(stbrp_context *context, int heuristic)
{
switch (context->init_mode) {
case STBRP__INIT_skyline:
STBRP_ASSERT(heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight || heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight);
context->heuristic = heuristic;
break;
default:
STBRP_ASSERT(0);
}
}
STBRP_DEF void stbrp_setup_allow_out_of_mem(stbrp_context *context, int allow_out_of_mem)
{
if (allow_out_of_mem)
// if it's ok to run out of memory, then don't bother aligning them;
// this gives better packing, but may fail due to OOM (even though
// the rectangles easily fit). @TODO a smarter approach would be to only
// quantize once we've hit OOM, then we could get rid of this parameter.
context->align = 1;
else {
// if it's not ok to run out of memory, then quantize the widths
// so that num_nodes is always enough nodes.
//
// I.e. num_nodes * align >= width
// align >= width / num_nodes
// align = ceil(width/num_nodes)
context->align = (context->width + context->num_nodes-1) / context->num_nodes;
}
}
STBRP_DEF void stbrp_init_target(stbrp_context *context, int width, int height, stbrp_node *nodes, int num_nodes)
{
int i;
#ifndef STBRP_LARGE_RECTS
STBRP_ASSERT(width <= 0xffff && height <= 0xffff);
#endif
for (i=0; i < num_nodes-1; ++i)
nodes[i].next = &nodes[i+1];
nodes[i].next = NULL;
context->init_mode = STBRP__INIT_skyline;
context->heuristic = STBRP_HEURISTIC_Skyline_default;
context->free_head = &nodes[0];
context->active_head = &context->extra[0];
context->width = width;
context->height = height;
context->num_nodes = num_nodes;
stbrp_setup_allow_out_of_mem(context, 0);
// node 0 is the full width, node 1 is the sentinel (lets us not store width explicitly)
context->extra[0].x = 0;
context->extra[0].y = 0;
context->extra[0].next = &context->extra[1];
context->extra[1].x = (stbrp_coord) width;
#ifdef STBRP_LARGE_RECTS
context->extra[1].y = (1<<30);
#else
context->extra[1].y = 65535;
#endif
context->extra[1].next = NULL;
}
// find minimum y position if it starts at x1
static int stbrp__skyline_find_min_y(stbrp_context *c, stbrp_node *first, int x0, int width, int *pwaste)
{
stbrp_node *node = first;
int x1 = x0 + width;
int min_y, visited_width, waste_area;
STBRP__NOTUSED(c);
STBRP_ASSERT(first->x <= x0);
#if 0
// skip in case we're past the node
while (node->next->x <= x0)
++node;
#else
STBRP_ASSERT(node->next->x > x0); // we ended up handling this in the caller for efficiency
#endif
STBRP_ASSERT(node->x <= x0);
min_y = 0;
waste_area = 0;
visited_width = 0;
while (node->x < x1) {
if (node->y > min_y) {
// raise min_y higher.
// we've accounted for all waste up to min_y,
// but we'll now add more waste for everything we've visted
waste_area += visited_width * (node->y - min_y);
min_y = node->y;
// the first time through, visited_width might be reduced
if (node->x < x0)
visited_width += node->next->x - x0;
else
visited_width += node->next->x - node->x;
} else {
// add waste area
int under_width = node->next->x - node->x;
if (under_width + visited_width > width)
under_width = width - visited_width;
waste_area += under_width * (min_y - node->y);
visited_width += under_width;
}
node = node->next;
}
*pwaste = waste_area;
return min_y;
}
typedef struct
{
int x,y;
stbrp_node **prev_link;
} stbrp__findresult;
static stbrp__findresult stbrp__skyline_find_best_pos(stbrp_context *c, int width, int height)
{
int best_waste = (1<<30), best_x, best_y = (1 << 30);
stbrp__findresult fr;
stbrp_node **prev, *node, *tail, **best = NULL;
// align to multiple of c->align
width = (width + c->align - 1);
width -= width % c->align;
STBRP_ASSERT(width % c->align == 0);
node = c->active_head;
prev = &c->active_head;
while (node->x + width <= c->width) {
int y,waste;
y = stbrp__skyline_find_min_y(c, node, node->x, width, &waste);
if (c->heuristic == STBRP_HEURISTIC_Skyline_BL_sortHeight) { // actually just want to test BL
// bottom left
if (y < best_y) {
best_y = y;
best = prev;
}
} else {
// best-fit
if (y + height <= c->height) {
// can only use it if it first vertically
if (y < best_y || (y == best_y && waste < best_waste)) {
best_y = y;
best_waste = waste;
best = prev;
}
}
}
prev = &node->next;
node = node->next;
}
best_x = (best == NULL) ? 0 : (*best)->x;
// if doing best-fit (BF), we also have to try aligning right edge to each node position
//
// e.g, if fitting
//
// ____________________
// |____________________|
//
// into
//
// | |
// | ____________|
// |____________|
//
// then right-aligned reduces waste, but bottom-left BL is always chooses left-aligned
//
// This makes BF take about 2x the time
if (c->heuristic == STBRP_HEURISTIC_Skyline_BF_sortHeight) {
tail = c->active_head;
node = c->active_head;
prev = &c->active_head;
// find first node that's admissible
while (tail->x < width)
tail = tail->next;
while (tail) {
int xpos = tail->x - width;
int y,waste;
STBRP_ASSERT(xpos >= 0);
// find the left position that matches this
while (node->next->x <= xpos) {
prev = &node->next;
node = node->next;
}
STBRP_ASSERT(node->next->x > xpos && node->x <= xpos);
y = stbrp__skyline_find_min_y(c, node, xpos, width, &waste);
if (y + height < c->height) {
if (y <= best_y) {
if (y < best_y || waste < best_waste || (waste==best_waste && xpos < best_x)) {
best_x = xpos;
STBRP_ASSERT(y <= best_y);
best_y = y;
best_waste = waste;
best = prev;
}
}
}
tail = tail->next;
}
}
fr.prev_link = best;
fr.x = best_x;
fr.y = best_y;
return fr;
}
static stbrp__findresult stbrp__skyline_pack_rectangle(stbrp_context *context, int width, int height)
{
// find best position according to heuristic
stbrp__findresult res = stbrp__skyline_find_best_pos(context, width, height);
stbrp_node *node, *cur;
// bail if:
// 1. it failed
// 2. the best node doesn't fit (we don't always check this)
// 3. we're out of memory
if (res.prev_link == NULL || res.y + height > context->height || context->free_head == NULL) {
res.prev_link = NULL;
return res;
}
// on success, create new node
node = context->free_head;
node->x = (stbrp_coord) res.x;
node->y = (stbrp_coord) (res.y + height);
context->free_head = node->next;
// insert the new node into the right starting point, and
// let 'cur' point to the remaining nodes needing to be
// stiched back in
cur = *res.prev_link;
if (cur->x < res.x) {
// preserve the existing one, so start testing with the next one
stbrp_node *next = cur->next;
cur->next = node;
cur = next;
} else {
*res.prev_link = node;
}
// from here, traverse cur and free the nodes, until we get to one
// that shouldn't be freed
while (cur->next && cur->next->x <= res.x + width) {
stbrp_node *next = cur->next;
// move the current node to the free list
cur->next = context->free_head;
context->free_head = cur;
cur = next;
}
// stitch the list back in
node->next = cur;
if (cur->x < res.x + width)
cur->x = (stbrp_coord) (res.x + width);
#ifdef _DEBUG
cur = context->active_head;
while (cur->x < context->width) {
STBRP_ASSERT(cur->x < cur->next->x);
cur = cur->next;
}
STBRP_ASSERT(cur->next == NULL);
{
stbrp_node *L1 = NULL, *L2 = NULL;
int count=0;
cur = context->active_head;
while (cur) {
L1 = cur;
cur = cur->next;
++count;
}
cur = context->free_head;
while (cur) {
L2 = cur;
cur = cur->next;
++count;
}
STBRP_ASSERT(count == context->num_nodes+2);
}
#endif
return res;
}
static int rect_height_compare(const void *a, const void *b)
{
const stbrp_rect *p = (const stbrp_rect *) a;
const stbrp_rect *q = (const stbrp_rect *) b;
if (p->h > q->h)
return -1;
if (p->h < q->h)
return 1;
return (p->w > q->w) ? -1 : (p->w < q->w);
}
static int rect_original_order(const void *a, const void *b)
{
const stbrp_rect *p = (const stbrp_rect *) a;
const stbrp_rect *q = (const stbrp_rect *) b;
return (p->was_packed < q->was_packed) ? -1 : (p->was_packed > q->was_packed);
}
#ifdef STBRP_LARGE_RECTS
#define STBRP__MAXVAL 0xffffffff
#else
#define STBRP__MAXVAL 0xffff
#endif
STBRP_DEF int stbrp_pack_rects(stbrp_context *context, stbrp_rect *rects, int num_rects)
{
int i, all_rects_packed = 1;
// we use the 'was_packed' field internally to allow sorting/unsorting
for (i=0; i < num_rects; ++i) {
rects[i].was_packed = i;
#ifndef STBRP_LARGE_RECTS
STBRP_ASSERT(rects[i].w <= 0xffff && rects[i].h <= 0xffff);
#endif
}
// sort according to heuristic
STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_height_compare);
for (i=0; i < num_rects; ++i) {
if (rects[i].w == 0 || rects[i].h == 0) {
rects[i].x = rects[i].y = 0; // empty rect needs no space
} else {
stbrp__findresult fr = stbrp__skyline_pack_rectangle(context, rects[i].w, rects[i].h);
if (fr.prev_link) {
rects[i].x = (stbrp_coord) fr.x;
rects[i].y = (stbrp_coord) fr.y;
} else {
rects[i].x = rects[i].y = STBRP__MAXVAL;
}
}
}
// unsort
STBRP_SORT(rects, num_rects, sizeof(rects[0]), rect_original_order);
// set was_packed flags and all_rects_packed status
for (i=0; i < num_rects; ++i) {
rects[i].was_packed = !(rects[i].x == STBRP__MAXVAL && rects[i].y == STBRP__MAXVAL);
if (!rects[i].was_packed)
all_rects_packed = 0;
}
// return the all_rects_packed status
return all_rects_packed;
}
#endif
/*
------------------------------------------------------------------------------
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/

1404
3rdparty/stb/include/stb_textedit.h vendored Normal file

File diff suppressed because it is too large Load diff

4853
3rdparty/stb/include/stb_truetype.h vendored Normal file

File diff suppressed because it is too large Load diff

View file

@ -1,2 +1,5 @@
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_TRUETYPE_IMPLEMENTATION
#include "stb_truetype.h"

View file

@ -26,7 +26,8 @@ add_executable(Graph
src/renderer.cpp
src/worldpass.cpp
src/postpass.cpp
src/dofpass.cpp)
src/dofpass.cpp
src/imguipass.cpp)
target_link_libraries(Graph
PUBLIC
SDL2::SDL2
@ -34,7 +35,8 @@ target_link_libraries(Graph
Vulkan::Vulkan
${ASSIMP_LIBRARIES}
nlohmann::json
stb::stb)
stb::stb
imgui::imgui)
target_include_directories(Graph
PUBLIC
include
@ -48,7 +50,9 @@ if(UNIX)
shaders/post.vert
shaders/post.frag
shaders/gfield.vert
shaders/gfield.frag)
shaders/gfield.frag
shaders/imgui.vert
shaders/imgui.frag)
endif()
add_data(Graph

35
include/imguipass.h Normal file
View file

@ -0,0 +1,35 @@
#pragma once
#include <vulkan/vulkan.h>
#include <map>
class Renderer;
struct RenderTarget;
class ImGuiPass {
public:
ImGuiPass(Renderer& renderer);
~ImGuiPass();
void render(VkCommandBuffer commandBuffer, RenderTarget* target);
private:
void createDescriptorSetLayout();
void createPipeline();
void createFontImage();
void createBuffer(VkBuffer& buffer, VkDeviceMemory& memory, VkDeviceSize size, VkBufferUsageFlagBits bufferUsage);
VkDescriptorSetLayout setLayout_ = nullptr;
VkPipelineLayout pipelineLayout_ = nullptr;
VkPipeline pipeline_ = nullptr;
VkImage fontImage_ = nullptr;
VkDeviceMemory fontMemory_ = nullptr;
VkImageView fontImageView_ = nullptr;
VkSampler fontSampler_ = nullptr;
std::map<VkImageView, VkDescriptorSet> descriptorSets_ = {};
Renderer& renderer_;
};

View file

@ -5,6 +5,7 @@
#include "worldpass.h"
#include "postpass.h"
#include "dofpass.h"
#include "imguipass.h"
struct RenderTarget {
VkSurfaceKHR surface = nullptr;
@ -50,6 +51,15 @@ struct RenderTarget {
VkSemaphore renderFinishedSemaphore = nullptr;
VkFence* fences = nullptr;
// imgui
VkBuffer* imguiVertexBuffers = nullptr;
VkDeviceMemory* imguiVertexMemorys = nullptr;
size_t* imguiVertexBufferSizes = nullptr;
VkBuffer* imguiIndexBuffers = nullptr;
VkDeviceMemory* imguiIndexMemorys = nullptr;
size_t* imguiIndexBufferSizes = nullptr;
VkDescriptorSet* postSets = nullptr;
VkDescriptorSet* dofSets = nullptr;
};
@ -72,6 +82,8 @@ public:
VkShaderModule createShader(const char* path);
void uploadImageData(VkImage image, int width, int height, VkDeviceSize size, void* src);
uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties);
void fillMeshBuffers(Mesh* mesh);
@ -142,4 +154,5 @@ private:
WorldPass* worldPass_ = nullptr;
PostPass* postPass_ = nullptr;
DoFPass* dofPass_ = nullptr;
ImGuiPass* imguiPass_ = nullptr;
};

12
shaders/imgui.frag Normal file
View file

@ -0,0 +1,12 @@
#version 460 core
layout(location = 0) in vec2 inUV;
layout(location = 1) in vec4 inColor;
layout(location = 0) out vec4 outColor;
layout(binding = 0) uniform sampler2D boundSampler;
void main() {
outColor = inColor * texture(boundSampler, inUV);
}

18
shaders/imgui.vert Normal file
View file

@ -0,0 +1,18 @@
#version 460 core
layout(location = 0) in vec2 inPos;
layout(location = 1) in vec2 inUV;
layout(location = 2) in vec4 inColor;
layout(push_constant) uniform PushConstants {
vec2 scale, translate;
} pushConstants;
layout(location = 0) out vec2 outUV;
layout(location = 1) out vec4 outColor;
void main() {
gl_Position = vec4(inPos * pushConstants.scale + pushConstants.translate, 0.0, 1.0);
outUV = inUV;
outColor = inColor;
}

View file

@ -332,7 +332,6 @@ void DoFPass::createBokehImage() {
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
@ -350,129 +349,15 @@ void DoFPass::createBokehImage() {
vkAllocateMemory(renderer_.getDevice(), &allocInfo, nullptr, &bokehMemory_);
vkBindImageMemory(renderer_.getDevice(), bokehImage_, bokehMemory_, 0);
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = width * height * 4;
bufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vkCreateBuffer(renderer_.getDevice(), &bufferInfo, nullptr, &stagingBuffer);
vkGetBufferMemoryRequirements(renderer_.getDevice(), stagingBuffer, &memRequirements);
allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = renderer_.findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
vkAllocateMemory(renderer_.getDevice(), &allocInfo, nullptr, &stagingMemory);
vkBindBufferMemory(renderer_.getDevice(), stagingBuffer, stagingMemory, 0);
void* data;
vkMapMemory(renderer_.getDevice(), stagingMemory, 0, width * height * 4, 0, &data);
memcpy(data, pixels, width * height * 4);
vkUnmapMemory(renderer_.getDevice(), stagingMemory);
stbi_image_free(pixels);
VkCommandBufferAllocateInfo bufferAllocateInfo = {};
bufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
bufferAllocateInfo.commandPool = renderer_.getCommandPool();
bufferAllocateInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer = nullptr;
vkAllocateCommandBuffers(renderer_.getDevice(), &bufferAllocateInfo, &commandBuffer);
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
// change layout to transfer dst
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.image = bokehImage_;
imageMemoryBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageMemoryBarrier.subresourceRange.layerCount = 1;
imageMemoryBarrier.subresourceRange.levelCount = 1;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
vkCmdCopyBufferToImage(
commandBuffer,
stagingBuffer,
renderer_.uploadImageData(
bokehImage_,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region
width,
height,
width * height * 4,
pixels
);
// change layout to shader read only
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageMemoryBarrier.image = bokehImage_;
imageMemoryBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageMemoryBarrier.subresourceRange.layerCount = 1;
imageMemoryBarrier.subresourceRange.levelCount = 1;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkEndCommandBuffer(commandBuffer);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
VkFenceCreateInfo fenceCreateInfo = {};
fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VkFence fence = nullptr;
vkCreateFence(renderer_.getDevice(), &fenceCreateInfo, nullptr, &fence);
vkQueueSubmit(renderer_.getGraphicsQueue(), 1, &submitInfo, fence);
vkWaitForFences(renderer_.getDevice(), 1, &fence, VK_TRUE, -1);
vkDestroyFence(renderer_.getDevice(), fence, nullptr);
vkFreeCommandBuffers(renderer_.getDevice(), renderer_.getCommandPool(), 1, &commandBuffer);
vkFreeMemory(renderer_.getDevice(), stagingMemory, nullptr);
vkDestroyBuffer(renderer_.getDevice(), stagingBuffer, nullptr);
stbi_image_free(pixels);
VkImageViewCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;

379
src/imguipass.cpp Normal file
View file

@ -0,0 +1,379 @@
#include "imguipass.h"
#include <array>
#include <glm/glm.hpp>
#include <imgui.h>
#include "renderer.h"
ImGuiPass::ImGuiPass(Renderer& renderer) : renderer_(renderer) {
createDescriptorSetLayout();
createPipeline();
createFontImage();
}
ImGuiPass::~ImGuiPass() {
vkDestroySampler(renderer_.getDevice(), fontSampler_, nullptr);
vkDestroyImageView(renderer_.getDevice(), fontImageView_, nullptr);
vkFreeMemory(renderer_.getDevice(), fontMemory_, nullptr);
vkDestroyImage(renderer_.getDevice(), fontImage_, nullptr);
vkDestroyPipeline(renderer_.getDevice(), pipeline_, nullptr);
vkDestroyPipelineLayout(renderer_.getDevice(), pipelineLayout_, nullptr);
vkDestroyDescriptorSetLayout(renderer_.getDevice(), setLayout_, nullptr);
}
void ImGuiPass::render(VkCommandBuffer commandBuffer, RenderTarget* target) {
ImDrawData* drawData = ImGui::GetDrawData();
VkBuffer& vertexBuffer = target->imguiVertexBuffers[target->currentImage];
VkDeviceMemory& vertexMemory = target->imguiVertexMemorys[target->currentImage];
VkBuffer& indexBuffer = target->imguiIndexBuffers[target->currentImage];
VkDeviceMemory& indexMemory = target->imguiIndexMemorys[target->currentImage];
const size_t vertexSize = drawData->TotalVtxCount * sizeof(ImDrawVert);
if(vertexSize > target->imguiVertexBufferSizes[target->currentImage]) {
createBuffer(vertexBuffer, vertexMemory, vertexSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
target->imguiVertexBufferSizes[target->currentImage] = vertexSize;
}
const size_t indexSize = drawData->TotalIdxCount * sizeof(ImDrawIdx);
if(indexSize > target->imguiIndexBufferSizes[target->currentImage]) {
createBuffer(indexBuffer, indexMemory, indexSize, VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
target->imguiIndexBufferSizes[target->currentImage] = indexSize;
}
if(vertexSize == 0 || indexSize == 0)
return;
ImDrawVert* vertexData = nullptr;
ImDrawIdx* indexData = nullptr;
vkMapMemory(renderer_.getDevice(), vertexMemory, 0, vertexSize, 0, reinterpret_cast<void**>(&vertexData));
vkMapMemory(renderer_.getDevice(), indexMemory, 0, indexSize, 0, reinterpret_cast<void**>(&indexData));
for(int i = 0; i < drawData->CmdListsCount; i++) {
const ImDrawList* cmd_list = drawData->CmdLists[i];
memcpy(vertexData, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
vertexData += cmd_list->VtxBuffer.Size;
memcpy(indexData, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
indexData += cmd_list->IdxBuffer.Size;
}
vkUnmapMemory(renderer_.getDevice(), vertexMemory);
vkUnmapMemory(renderer_.getDevice(), indexMemory);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_);
VkDeviceSize offset = 0;
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertexBuffer, &offset);
vkCmdBindIndexBuffer(commandBuffer, indexBuffer, 0, VK_INDEX_TYPE_UINT16);
float scale[2];
scale[0] = 2.0f / drawData->DisplaySize.x;
scale[1] = 2.0f / drawData->DisplaySize.y;
float translate[2];
translate[0] = -1.0f - drawData->DisplayPos.x * scale[0];
translate[1] = -1.0f - drawData->DisplayPos.y * scale[1];
vkCmdPushConstants(commandBuffer, pipelineLayout_, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale);
vkCmdPushConstants(commandBuffer, pipelineLayout_, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate);
int vertexOffset = 0, indexOffset = 0;
const ImVec2 displayPos = drawData->DisplayPos;
for(int n = 0; n < drawData->CmdListsCount; n++) {
const ImDrawList* cmd_list = drawData->CmdLists[n];
for(int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++) {
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i];
if(descriptorSets_.count((VkImageView)pcmd->TextureId)) {
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &descriptorSets_[(VkImageView)pcmd->TextureId], 0, nullptr);
} else {
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = renderer_.getDescriptorPool();
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &setLayout_;
VkDescriptorSet set = nullptr;
vkAllocateDescriptorSets(renderer_.getDevice(), &allocInfo, &set);
VkDescriptorImageInfo imageInfo = {};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = (VkImageView)pcmd->TextureId;
imageInfo.sampler = fontSampler_;
VkWriteDescriptorSet descriptorWrite = {};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.descriptorCount = 1;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite.dstSet = set;
descriptorWrite.pImageInfo = &imageInfo;
vkUpdateDescriptorSets(renderer_.getDevice(), 1, &descriptorWrite, 0, nullptr);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout_, 0, 1, &set, 0, nullptr);
descriptorSets_[(VkImageView)pcmd->TextureId] = set;
}
if(pcmd->UserCallback) {
pcmd->UserCallback(cmd_list, pcmd);
} else {
VkRect2D scissor;
scissor.offset.x = (int32_t)(pcmd->ClipRect.x - displayPos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - displayPos.x) : 0;
scissor.offset.y = (int32_t)(pcmd->ClipRect.y - displayPos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - displayPos.y) : 0;
scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1);
vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
vkCmdDrawIndexed(commandBuffer, pcmd->ElemCount, 1, indexOffset, vertexOffset, 0);
}
indexOffset += pcmd->ElemCount;
}
vertexOffset += cmd_list->VtxBuffer.Size;
}
}
void ImGuiPass::createDescriptorSetLayout() {
VkDescriptorSetLayoutBinding samplerBinding = {};
samplerBinding.descriptorCount = 1;
samplerBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
samplerBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
VkDescriptorSetLayoutCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
createInfo.bindingCount = 1;
createInfo.pBindings = &samplerBinding;
vkCreateDescriptorSetLayout(renderer_.getDevice(), &createInfo, nullptr, &setLayout_);
}
void ImGuiPass::createPipeline() {
VkShaderModule vertShaderModule = renderer_.createShader("shaders/imgui.vert.spv");
VkShaderModule fragShaderModule = renderer_.createShader("shaders/imgui.frag.spv");
VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
vertShaderStageInfo.module = vertShaderModule;
vertShaderStageInfo.pName = "main";
VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragShaderStageInfo.module = fragShaderModule;
fragShaderStageInfo.pName = "main";
const std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages = {vertShaderStageInfo, fragShaderStageInfo};
VkVertexInputBindingDescription vertexBindingDescription = {};
vertexBindingDescription.stride = sizeof(ImDrawVert);
vertexBindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
VkVertexInputAttributeDescription positionAttribute = {};
positionAttribute.format = VK_FORMAT_R32G32_SFLOAT;
positionAttribute.offset = offsetof(ImDrawVert, pos);
VkVertexInputAttributeDescription uvAttribute = {};
uvAttribute.location = 1;
uvAttribute.format = VK_FORMAT_R32G32_SFLOAT;
uvAttribute.offset = offsetof(ImDrawVert, uv);
VkVertexInputAttributeDescription colorAttribute = {};
colorAttribute.location = 2;
colorAttribute.format = VK_FORMAT_R8G8B8A8_UNORM;
colorAttribute.offset = offsetof(ImDrawVert, col);
const std::array<VkVertexInputAttributeDescription, 3> attributes = {
positionAttribute,
uvAttribute,
colorAttribute
};
VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.pVertexBindingDescriptions = &vertexBindingDescription;
vertexInputInfo.vertexAttributeDescriptionCount = attributes.size();
vertexInputInfo.pVertexAttributeDescriptions = attributes.data();
VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;
viewportState.scissorCount = 1;
VkPipelineRasterizationStateCreateInfo rasterizer = {};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
rasterizer.cullMode = VK_CULL_MODE_NONE;
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizer.lineWidth = 1.0f;
VkPipelineMultisampleStateCreateInfo multisampling = {};
multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
colorBlendAttachment.blendEnable = VK_TRUE;
colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
VkPipelineColorBlendStateCreateInfo colorBlending = {};
colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
colorBlending.attachmentCount = 1;
colorBlending.pAttachments = &colorBlendAttachment;
const std::array<VkDynamicState, 2> dynamicStates = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState = {};
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.dynamicStateCount = dynamicStates.size();
dynamicState.pDynamicStates = dynamicStates.data();
VkPushConstantRange pushConstant = {};
pushConstant.size = sizeof(glm::vec4);
pushConstant.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelineLayoutInfo.setLayoutCount = 1;
pipelineLayoutInfo.pSetLayouts = &setLayout_;
pipelineLayoutInfo.pushConstantRangeCount = 1;
pipelineLayoutInfo.pPushConstantRanges = &pushConstant;
vkCreatePipelineLayout(renderer_.getDevice(), &pipelineLayoutInfo, nullptr, &pipelineLayout_);
VkGraphicsPipelineCreateInfo pipelineInfo = {};
pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelineInfo.stageCount = shaderStages.size();
pipelineInfo.pStages = shaderStages.data();
pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelineInfo.pInputAssemblyState = &inputAssembly;
pipelineInfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelineInfo.pColorBlendState = &colorBlending;
pipelineInfo.pDynamicState = &dynamicState;
pipelineInfo.layout = pipelineLayout_;
pipelineInfo.renderPass = renderer_.getRenderPass();
vkCreateGraphicsPipelines(renderer_.getDevice(), nullptr, 1, &pipelineInfo, nullptr, &pipeline_);
vkDestroyShaderModule(renderer_.getDevice(), fragShaderModule, nullptr);
vkDestroyShaderModule(renderer_.getDevice(), vertShaderModule, nullptr);
}
void ImGuiPass::createFontImage() {
ImGuiIO& io = ImGui::GetIO();
unsigned char* pixels = nullptr;
int width = 0, height = 0;
io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height);
VkImageCreateInfo imageCreateInfo = {};
imageCreateInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.extent.width = width;
imageCreateInfo.extent.height = height;
imageCreateInfo.extent.depth = 1;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
vkCreateImage(renderer_.getDevice(), &imageCreateInfo, nullptr, &fontImage_);
VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(renderer_.getDevice(), fontImage_, &memRequirements);
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = renderer_.findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkAllocateMemory(renderer_.getDevice(), &allocInfo, nullptr, &fontMemory_);
vkBindImageMemory(renderer_.getDevice(), fontImage_, fontMemory_, 0);
renderer_.uploadImageData(
fontImage_,
width,
height,
width * height * 4,
pixels
);
VkImageViewCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
createInfo.image = fontImage_;
createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
createInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
createInfo.subresourceRange.levelCount = 1;
createInfo.subresourceRange.layerCount = 1;
vkCreateImageView(renderer_.getDevice(), &createInfo, nullptr, &fontImageView_);
io.Fonts->TexID = static_cast<ImTextureID>(fontImageView_);
VkSamplerCreateInfo samplerInfo = {};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
vkCreateSampler(renderer_.getDevice(), &samplerInfo, nullptr, &fontSampler_);
}
void ImGuiPass::createBuffer(VkBuffer& buffer, VkDeviceMemory& memory, VkDeviceSize size, VkBufferUsageFlagBits bufferUsage) {
if(buffer != nullptr)
vkDestroyBuffer(renderer_.getDevice(), buffer, nullptr);
if(memory != nullptr)
vkFreeMemory(renderer_.getDevice(), memory, nullptr);
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = bufferUsage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vkCreateBuffer(renderer_.getDevice(), &bufferInfo, nullptr, &buffer);
VkMemoryRequirements memRequirements = {};
vkGetBufferMemoryRequirements(renderer_.getDevice(), buffer, &memRequirements);
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = renderer_.findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
vkAllocateMemory(renderer_.getDevice(), &allocInfo, nullptr, &memory);
vkBindBufferMemory(renderer_.getDevice(), buffer, memory, 0);
}

View file

@ -7,6 +7,7 @@
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <imgui.h>
#include "renderer.h"
#include "platform.h"
@ -218,6 +219,13 @@ int main(int argc, char* argv[]) {
SDL_SetWindowFullscreen(window, windowFullscreen == 1 ? SDL_WINDOW_FULLSCREEN_DESKTOP : 0);
ImGui::CreateContext();
auto& io = ImGui::GetIO();
io.DisplaySize = ImVec2(windowWidth, windowHeight);
ImGui::StyleColorsDark();
renderer = new Renderer();
VkSurfaceKHR surface = nullptr;
@ -240,7 +248,7 @@ int main(int argc, char* argv[]) {
else
world.meshes.push_back(loadMesh("data/scene.obj"));
float currentTime = 0.0f, lastTime = 0.0f;
float currentTime = 0.0f, lastTime = 0.0f, animationTime = 0.0f;
Shot* currentShot = nullptr;
bool running = true;
@ -251,9 +259,12 @@ int main(int argc, char* argv[]) {
running = false;
if(event.type == SDL_WINDOWEVENT) {
if(event.window.event == SDL_WINDOWEVENT_RESIZED)
if(event.window.event == SDL_WINDOWEVENT_RESIZED) {
io.DisplaySize = ImVec2(event.window.data1, event.window.data2);
target = renderer->createSurfaceRenderTarget(surface, target);
}
}
if(event.type == SDL_KEYDOWN && event.key.keysym.scancode == SDL_SCANCODE_F11) {
if(windowFullscreen == 1) {
@ -278,7 +289,7 @@ int main(int argc, char* argv[]) {
if(shot->end > endTime)
endTime = shot->end;
if(currentTime >= shot->start && currentTime < shot->end && currentShot != shot) {
if(animationTime >= shot->start && animationTime < shot->end && currentShot != shot) {
if(currentShot != nullptr) {
world.meshes.clear();
}
@ -291,7 +302,7 @@ int main(int argc, char* argv[]) {
}
// we have reached the end of the cinematic
if(currentTime >= endTime) {
if(animationTime >= endTime) {
currentShot = nullptr;
world.meshes.clear();
@ -301,7 +312,7 @@ int main(int argc, char* argv[]) {
for(auto animation : currentShot->animations) {
unsigned int frameIndex = 0;
for(size_t i = 0; i < animation->keyframes.size(); i++) {
if(currentTime < animation->keyframes[i + 1].time) {
if(animationTime < animation->keyframes[i + 1].time) {
frameIndex = i;
break;
}
@ -310,7 +321,7 @@ int main(int argc, char* argv[]) {
const auto currentFrame = animation->keyframes[frameIndex];
const auto nextFrame = animation->keyframes[(frameIndex + 1) % animation->keyframes.size()];
const float delta = (currentTime - currentFrame.time) / (nextFrame.time - currentFrame.time);
const float delta = (animationTime - currentFrame.time) / (nextFrame.time - currentFrame.time);
glm::vec3 pos = currentFrame.value + delta * (nextFrame.value - currentFrame.value);
@ -322,11 +333,30 @@ int main(int argc, char* argv[]) {
}
}
currentTime = SDL_GetTicks() / 1000.0f;
const float deltaTime = currentTime - lastTime;
lastTime = currentTime;
ImGui::NewFrame();
io.DeltaTime = deltaTime;
int mouseX = 0, mouseY = 0;
const Uint32 mouseButtons = SDL_GetMouseState(&mouseX, &mouseY);
io.MouseDown[0] = (mouseButtons & SDL_BUTTON(SDL_BUTTON_LEFT)) != 0;
io.MouseDown[1] = (mouseButtons & SDL_BUTTON(SDL_BUTTON_RIGHT)) != 0;
io.MouseDown[2] = (mouseButtons & SDL_BUTTON(SDL_BUTTON_MIDDLE)) != 0;
if(SDL_GetWindowFlags(window) & SDL_WINDOW_INPUT_FOCUS)
io.MousePos = ImVec2(static_cast<float>(mouseX), static_cast<float>(mouseY));
ImGui::ShowDemoWindow();
ImGui::Render();
renderer->render(world, camera, target);
if(cinematicMode) {
currentTime += ((SDL_GetTicks() / 1000.0f) - lastTime);
lastTime = currentTime;
animationTime += deltaTime;
static int frameNum = 0;
std::string screenshotName = "frame" + std::to_string(frameNum) + ".ppm";

View file

@ -26,11 +26,13 @@ Renderer::Renderer() {
worldPass_ = new WorldPass(*this);
postPass_ = new PostPass(*this);
dofPass_ = new DoFPass(*this);
imguiPass_ = new ImGuiPass(*this);
}
Renderer::~Renderer() {
vkDeviceWaitIdle(device_);
delete imguiPass_;
delete dofPass_;
delete postPass_;
delete worldPass_;
@ -95,6 +97,7 @@ void Renderer::render(World& world, Camera& camera, RenderTarget* target) {
vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
postPass_->render(commandBuffer, target);
imguiPass_->render(commandBuffer, target);
vkCmdEndRenderPass(commandBuffer);
@ -203,6 +206,12 @@ RenderTarget* Renderer::createSurfaceRenderTarget(VkSurfaceKHR surface, RenderTa
target->farFieldMemory = new VkDeviceMemory[swapchainImageCount];
target->farFieldImageViews = new VkImageView[swapchainImageCount];
target->farFieldFramebuffers = new VkFramebuffer[swapchainImageCount];
target->imguiVertexBuffers = new VkBuffer[swapchainImageCount];
target->imguiVertexMemorys = new VkDeviceMemory[swapchainImageCount];
target->imguiVertexBufferSizes = new size_t[swapchainImageCount];
target->imguiIndexBuffers = new VkBuffer[swapchainImageCount];
target->imguiIndexMemorys = new VkDeviceMemory[swapchainImageCount];
target->imguiIndexBufferSizes = new size_t[swapchainImageCount];
for(uint32_t i = 0; i < swapchainImageCount; i++) {
// swapchain image view
{
@ -450,6 +459,17 @@ RenderTarget* Renderer::createSurfaceRenderTarget(VkSurfaceKHR surface, RenderTa
vkCreateFramebuffer(device_, &framebufferInfo, nullptr, &target->farFieldFramebuffers[i]);
}
// imgui
{
target->imguiVertexBuffers[i] = nullptr;
target->imguiVertexMemorys[i] = nullptr;
target->imguiVertexBufferSizes[i] = 0;
target->imguiIndexBuffers[i] = nullptr;
target->imguiIndexMemorys[i] = nullptr;
target->imguiIndexBufferSizes[i] = 0;
}
}
postPass_->createDescriptorSet(target);
@ -501,6 +521,12 @@ void Renderer::destroyRenderTarget(RenderTarget* target) {
vkFreeDescriptorSets(device_, descriptorPool_, target->numImages, target->postSets);
for(uint32_t i = 0; i < target->numImages; i++) {
vkFreeMemory(device_, target->imguiIndexMemorys[i], nullptr);
vkDestroyBuffer(device_, target->imguiIndexBuffers[i], nullptr);
vkFreeMemory(device_, target->imguiVertexMemorys[i], nullptr);
vkDestroyBuffer(device_, target->imguiVertexBuffers[i], nullptr);
vkDestroyFramebuffer(device_, target->nearFieldFramebuffers[i], nullptr);
vkDestroyImageView(device_, target->nearFieldImageViews[i], nullptr);
@ -527,6 +553,14 @@ void Renderer::destroyRenderTarget(RenderTarget* target) {
vkDestroyImageView(device_, target->swapchainImageViews[i], nullptr);
}
delete[] target->imguiIndexBufferSizes;
delete[] target->imguiIndexMemorys;
delete[] target->imguiIndexBuffers;
delete[] target->imguiVertexBufferSizes;
delete[] target->imguiVertexMemorys;
delete[] target->imguiVertexBuffers;
delete[] target->nearFieldFramebuffers;
delete[] target->nearFieldImageViews;
delete[] target->nearFieldMemory;
@ -783,6 +817,132 @@ VkShaderModule Renderer::createShader(const char* path) {
return shaderModule;
}
void Renderer::uploadImageData(VkImage image, int width, int height, VkDeviceSize size, void* src) {
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vkCreateBuffer(device_, &bufferInfo, nullptr, &stagingBuffer);
VkMemoryRequirements memRequirements = {};
vkGetBufferMemoryRequirements(device_, stagingBuffer, &memRequirements);
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
vkAllocateMemory(device_, &allocInfo, nullptr, &stagingMemory);
vkBindBufferMemory(device_, stagingBuffer, stagingMemory, 0);
void* data;
vkMapMemory(device_, stagingMemory, 0, size, 0, &data);
memcpy(data, src, size);
vkUnmapMemory(device_, stagingMemory);
VkCommandBufferAllocateInfo bufferAllocateInfo = {};
bufferAllocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
bufferAllocateInfo.commandPool = commandPool_;
bufferAllocateInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer = nullptr;
vkAllocateCommandBuffers(device_, &bufferAllocateInfo, &commandBuffer);
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
// change layout to transfer dst
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageMemoryBarrier.subresourceRange.layerCount = 1;
imageMemoryBarrier.subresourceRange.levelCount = 1;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.layerCount = 1;
region.imageExtent.width = width;
region.imageExtent.height = height;
region.imageExtent.depth = 1;
vkCmdCopyBufferToImage(
commandBuffer,
stagingBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region
);
// change layout to shader read only
{
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imageMemoryBarrier.subresourceRange.layerCount = 1;
imageMemoryBarrier.subresourceRange.levelCount = 1;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
vkEndCommandBuffer(commandBuffer);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
VkFenceCreateInfo fenceCreateInfo = {};
fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
VkFence fence = nullptr;
vkCreateFence(device_, &fenceCreateInfo, nullptr, &fence);
vkQueueSubmit(graphicsQueue_, 1, &submitInfo, fence);
vkWaitForFences(device_, 1, &fence, VK_TRUE, -1);
vkDestroyFence(device_, fence, nullptr);
vkFreeCommandBuffers(device_, commandPool_, 1, &commandBuffer);
vkFreeMemory(device_, stagingMemory, nullptr);
vkDestroyBuffer(device_, stagingBuffer, nullptr);
}
uint32_t Renderer::findMemoryType(const uint32_t typeFilter, const VkMemoryPropertyFlags properties) {
for(uint32_t i = 0; i < deviceMemoryProperties_.memoryTypeCount; i++) {
if((typeFilter & (1 << i)) && (deviceMemoryProperties_.memoryTypes[i].propertyFlags & properties) == properties) {