1
Fork 0
mirror of https://github.com/redstrate/Kawari.git synced 2025-07-20 11:47:46 +00:00
kawari/src/bin/kawari-navimesh.rs

746 lines
24 KiB
Rust
Raw Normal View History

use std::ptr::{null, null_mut};
use bevy::{
asset::RenderAssetUsages,
color::palettes::{
css::WHITE,
tailwind::{BLUE_100, GREEN_100, PINK_100, RED_500},
},
pbr::wireframe::{Wireframe, WireframeConfig, WireframePlugin},
picking::pointer::PointerInteraction,
prelude::*,
render::{
RenderPlugin,
mesh::{Indices, PrimitiveTopology},
settings::{RenderCreation, WgpuFeatures, WgpuSettings},
},
};
use icarus::TerritoryType::TerritoryTypeSheet;
use kawari::{
config::get_config,
world::{Navmesh, NavmeshParams},
};
use physis::{
common::{Language, Platform},
layer::{LayerEntryData, LayerGroup, ModelCollisionType, Transformation},
lvb::Lvb,
model::MDL,
pcb::{Pcb, ResourceNode},
resource::{Resource, SqPackResource},
tera::{PlateModel, Terrain},
};
use recastnavigation_sys::{
CreateContext, DT_SUCCESS, RC_MESH_NULL_IDX, dtCreateNavMeshData, dtNavMeshCreateParams,
dtNavMeshQuery, dtNavMeshQuery_findNearestPoly, dtPolyRef, dtQueryFilter,
rcAllocCompactHeightfield, rcAllocContourSet, rcAllocHeightfield, rcAllocPolyMesh,
rcAllocPolyMeshDetail, rcBuildCompactHeightfield, rcBuildContours,
rcBuildContoursFlags_RC_CONTOUR_TESS_WALL_EDGES, rcBuildDistanceField, rcBuildPolyMesh,
rcBuildPolyMeshDetail, rcBuildRegions, rcCalcGridSize, rcContext, rcCreateHeightfield,
rcErodeWalkableArea, rcHeightfield, rcMarkWalkableTriangles, rcRasterizeTriangles,
};
#[derive(Resource)]
struct ZoneToLoad(u16);
#[derive(Resource, Default)]
struct NavigationState {
navmesh: Navmesh,
path: Vec<Vec3>,
from_position: Vec3,
to_position: Vec3,
}
impl NavigationState {
pub fn calculate_path(&mut self) {
let start_pos = [
self.from_position.x,
self.from_position.y,
self.from_position.z,
];
let end_pos = [self.to_position.x, self.to_position.y, self.to_position.z];
self.path = self
.navmesh
.calculate_path(start_pos, end_pos)
.iter()
.map(|x| Vec3::from_slice(x))
.collect();
}
}
unsafe impl Send for NavigationState {}
unsafe impl Sync for NavigationState {}
fn main() {
tracing_subscriber::fmt::init();
let args: Vec<String> = std::env::args().collect();
let zone_id: u16 = args[1].parse().unwrap();
App::new()
.add_event::<Navigate>()
.add_event::<SetOrigin>()
.add_event::<SetTarget>()
.add_plugins((
DefaultPlugins.set(RenderPlugin {
render_creation: RenderCreation::Automatic(WgpuSettings {
features: WgpuFeatures::POLYGON_MODE_LINE,
..default()
}),
..default()
}),
MeshPickingPlugin,
WireframePlugin::default(),
))
.add_systems(Startup, setup)
.add_systems(Update, draw_mesh_intersections)
.insert_resource(WireframeConfig {
global: false,
default_color: WHITE.into(),
})
.insert_resource(ZoneToLoad(zone_id))
.insert_resource(NavigationState::default())
.run();
}
#[derive(Event, Reflect, Clone, Debug)]
struct Navigate();
#[derive(Event, Reflect, Clone, Debug)]
struct SetOrigin(Vec3);
#[derive(Event, Reflect, Clone, Debug)]
struct SetTarget(Vec3);
/// Walk each node, add it's collision model to the scene.
fn walk_node(
node: &ResourceNode,
commands: &mut Commands,
meshes: &mut ResMut<Assets<Mesh>>,
materials: &mut ResMut<Assets<StandardMaterial>>,
transform: &Transformation,
context: *mut rcContext,
height_field: *mut rcHeightfield,
) {
if !node.vertices.is_empty() {
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::all());
let mut positions = Vec::new();
for vec in &node.vertices {
positions.push(Vec3::from_slice(vec));
}
2025-07-09 15:58:57 -04:00
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions.clone());
let mut indices = Vec::new();
for polygon in &node.polygons {
let mut vec: Vec<u32> = Vec::from(&polygon.vertex_indices)
.iter()
.map(|x| *x as u32)
.collect();
assert!(vec.len() == 3);
indices.append(&mut vec);
}
2025-07-09 15:58:57 -04:00
mesh.insert_indices(Indices::U32(indices.clone()));
mesh.compute_normals();
let transform = Transform {
translation: Vec3::from_array(transform.translation),
rotation: Quat::from_euler(
EulerRot::XYZ,
transform.rotation[0],
transform.rotation[1],
transform.rotation[2],
),
scale: Vec3::from_array(transform.scale),
};
2025-07-09 15:58:57 -04:00
// insert into 3d scene
commands
.spawn((
Mesh3d(meshes.add(mesh)),
MeshMaterial3d(materials.add(Color::srgb(
fastrand::f32(),
fastrand::f32(),
fastrand::f32(),
))),
transform,
))
.observe(
|mut trigger: Trigger<Pointer<Click>>,
mut navigate_events: EventWriter<Navigate>,
mut target_events: EventWriter<SetTarget>,
mut origin_events: EventWriter<SetOrigin>| {
let click_event: &Pointer<Click> = trigger.event();
match click_event.button {
PointerButton::Primary => {
target_events.write(SetTarget(click_event.hit.position.unwrap()));
}
PointerButton::Secondary => {
origin_events.write(SetOrigin(click_event.hit.position.unwrap()));
}
PointerButton::Middle => {
navigate_events.write(Navigate());
}
}
trigger.propagate(false);
},
);
2025-07-09 15:58:57 -04:00
// Step 2: insert geoemtry into heightfield
let tile_indices: Vec<i32> = indices.iter().map(|x| *x as i32).collect();
let mut tri_area_ids: Vec<u8> = vec![0; tile_indices.len() / 3];
2025-07-09 15:58:57 -04:00
// transform the vertices on the CPU
let mut tile_vertices: Vec<[f32; 3]> = Vec::new();
let transform_matrix = transform.compute_matrix();
for vertex in &positions {
let transformed_vertex = transform_matrix.transform_point3(*vertex);
tile_vertices.push([
transformed_vertex.x,
transformed_vertex.y,
transformed_vertex.z,
]);
}
unsafe {
let ntris = tile_indices.len() as i32 / 3;
// mark areas as walkable
rcMarkWalkableTriangles(
context,
45.0,
std::mem::transmute::<*const [f32; 3], *const f32>(tile_vertices.as_ptr()),
positions.len() as i32,
tile_indices.as_ptr(),
ntris,
tri_area_ids.as_mut_ptr(),
);
assert!(rcRasterizeTriangles(
context,
std::mem::transmute::<*const [f32; 3], *const f32>(tile_vertices.as_ptr()),
positions.len() as i32,
tile_indices.as_ptr(),
tri_area_ids.as_ptr(),
ntris,
height_field,
2
));
}
}
for child in &node.children {
walk_node(
&child,
commands,
meshes,
materials,
transform,
context,
height_field,
);
}
}
fn add_plate(
plate: &PlateModel,
tera_path: &str,
sqpack_resource: &mut SqPackResource,
commands: &mut Commands,
meshes: &mut ResMut<Assets<Mesh>>,
materials: &mut ResMut<Assets<StandardMaterial>>,
context: *mut rcContext,
height_field: *mut rcHeightfield,
) {
let mdl_path = format!("{}/bgplate/{}", tera_path, plate.filename);
let mdl_bytes = sqpack_resource.read(&mdl_path).unwrap();
let mdl = MDL::from_existing(&mdl_bytes).unwrap();
let lod = &mdl.lods[0];
for part in &lod.parts {
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::all());
let mut positions = Vec::new();
let mut normals = Vec::new();
for vec in &part.vertices {
positions.push(Vec3::from_slice(&vec.position));
normals.push(Vec3::from_slice(&vec.normal));
}
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions.clone());
mesh.insert_attribute(Mesh::ATTRIBUTE_NORMAL, normals.clone());
mesh.insert_indices(Indices::U16(part.indices.clone()));
let transform = Transform::from_xyz(plate.position.0, 0.0, plate.position.1);
// insert into 3d scene
commands
.spawn((
Mesh3d(meshes.add(mesh)),
MeshMaterial3d(materials.add(Color::srgb(
fastrand::f32(),
fastrand::f32(),
fastrand::f32(),
))),
transform,
))
.observe(
|mut trigger: Trigger<Pointer<Click>>,
mut navigate_events: EventWriter<Navigate>,
mut target_events: EventWriter<SetTarget>,
mut origin_events: EventWriter<SetOrigin>| {
let click_event: &Pointer<Click> = trigger.event();
match click_event.button {
PointerButton::Primary => {
target_events.write(SetTarget(click_event.hit.position.unwrap()));
}
PointerButton::Secondary => {
origin_events.write(SetOrigin(click_event.hit.position.unwrap()));
}
PointerButton::Middle => {
navigate_events.write(Navigate());
}
}
trigger.propagate(false);
},
);
// Step 2: insert geoemtry into heightfield
let tile_indices: Vec<i32> = part.indices.iter().map(|x| *x as i32).collect();
let mut tri_area_ids: Vec<u8> = vec![0; tile_indices.len() / 3];
// transform the vertices on the CPU
let mut tile_vertices: Vec<[f32; 3]> = Vec::new();
let transform_matrix = transform.compute_matrix();
for vertex in &positions {
let transformed_vertex = transform_matrix.transform_point3(*vertex);
tile_vertices.push([
transformed_vertex.x,
transformed_vertex.y,
transformed_vertex.z,
]);
}
unsafe {
let ntris = tile_indices.len() as i32 / 3;
// mark areas as walkable
rcMarkWalkableTriangles(
context,
45.0,
std::mem::transmute::<*const [f32; 3], *const f32>(tile_vertices.as_ptr()),
positions.len() as i32,
tile_indices.as_ptr(),
ntris,
tri_area_ids.as_mut_ptr(),
);
assert!(rcRasterizeTriangles(
context,
std::mem::transmute::<*const [f32; 3], *const f32>(tile_vertices.as_ptr()),
positions.len() as i32,
tile_indices.as_ptr(),
tri_area_ids.as_ptr(),
ntris,
height_field,
2
));
}
}
}
fn get_polygon_at_location(
query: *const dtNavMeshQuery,
position: [f32; 3],
filter: &dtQueryFilter,
) -> (dtPolyRef, [f32; 3]) {
let extents = [2.0, 4.0, 2.0];
unsafe {
let mut nearest_ref = 0;
let mut nearest_pt = [0.0; 3];
assert!(
dtNavMeshQuery_findNearestPoly(
query,
position.as_ptr(),
extents.as_ptr(),
filter,
&mut nearest_ref,
nearest_pt.as_mut_ptr()
) == DT_SUCCESS
);
return (nearest_ref, nearest_pt);
}
}
/// Setup 3D scene.
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
zone_id: Res<ZoneToLoad>,
mut navigation_state: ResMut<NavigationState>,
) {
let zone_id = zone_id.0;
let config = get_config();
tracing::info!("Generating navmesh for zone {zone_id}!");
let mut sqpack_resource =
SqPackResource::from_existing(Platform::Win32, &config.filesystem.game_path);
let sheet = TerritoryTypeSheet::read_from(&mut sqpack_resource, Language::None).unwrap();
let Some(row) = sheet.get_row(zone_id as u32) else {
tracing::error!("Invalid zone id {zone_id}!");
return;
};
// e.g. ffxiv/fst_f1/fld/f1f3/level/f1f3
let bg_path = row.Bg().into_string().unwrap();
let path = format!("bg/{}.lvb", &bg_path);
let lvb_file = sqpack_resource.read(&path).unwrap();
let lvb = Lvb::from_existing(&lvb_file).unwrap();
let context;
let height_field;
let cell_size = 0.25;
let cell_height = 0.25;
2025-07-09 15:58:57 -04:00
unsafe {
context = CreateContext(true);
// Step 1: Create a heightfield
let mut size_x: i32 = 0;
let mut size_z: i32 = 0;
let min_bounds = [-100.0, -100.0, -100.0];
let max_bounds = [100.0, 100.0, 100.0];
rcCalcGridSize(
min_bounds.as_ptr(),
max_bounds.as_ptr(),
cell_size,
&mut size_x,
&mut size_z,
);
height_field = rcAllocHeightfield();
assert!(rcCreateHeightfield(
context,
height_field,
size_x,
size_z,
min_bounds.as_ptr(),
max_bounds.as_ptr(),
cell_size,
cell_height
));
2025-07-09 15:58:57 -04:00
}
let scene = &lvb.scns[0];
let tera_bytes = sqpack_resource
.read(&*format!(
"{}/bgplate/terrain.tera",
scene.general.path_terrain
))
.unwrap();
let tera = Terrain::from_existing(&tera_bytes).unwrap();
for plate in tera.plates {
add_plate(
&plate,
&scene.general.path_terrain,
&mut sqpack_resource,
&mut commands,
&mut meshes,
&mut materials,
context,
height_field,
);
}
for path in &scene.header.path_layer_group_resources {
if path.contains("bg.lgb") {
tracing::info!("Processing {path}...");
let lgb_file = sqpack_resource.read(path).unwrap();
let lgb = LayerGroup::from_existing(&lgb_file);
let Some(lgb) = lgb else {
tracing::error!(
"Failed to parse {path}, this is most likely a bug in Physis and should be reported somewhere!"
);
return;
};
// TODO: i think we know which layer is specifically used for navmesh gen, better check that LVB
for chunk in &lgb.chunks {
for layer in &chunk.layers {
for object in &layer.objects {
if let LayerEntryData::BG(bg) = &object.data {
if !bg.collision_asset_path.value.is_empty() {
tracing::info!("Considering {} for navimesh", object.instance_id);
tracing::info!("- Loading {}", bg.collision_asset_path.value);
// NOTE: assert is here to find out the unknown
assert!(bg.collision_type == ModelCollisionType::Replace);
let pcb_file = sqpack_resource
.read(&bg.collision_asset_path.value)
.unwrap();
let pcb = Pcb::from_existing(&pcb_file).unwrap();
walk_node(
&pcb.root_node,
&mut commands,
&mut meshes,
&mut materials,
&object.transform,
context,
height_field,
);
}
}
}
}
}
}
}
unsafe {
// Step 3: Build a compact heightfield out of the normal heightfield
let compact_heightfield = rcAllocCompactHeightfield();
let walkable_height = 2;
let walkable_climb = 1;
let walkable_radius = 0.5;
assert!(rcBuildCompactHeightfield(
context,
walkable_height,
walkable_climb,
height_field,
compact_heightfield
));
assert!((*compact_heightfield).spanCount > 0);
assert!(rcErodeWalkableArea(
context,
walkable_radius as i32,
compact_heightfield
));
assert!(rcBuildDistanceField(context, compact_heightfield));
let border_size = 2;
let min_region_area = 1;
let merge_region_area = 0;
assert!(rcBuildRegions(
context,
compact_heightfield,
border_size,
min_region_area,
merge_region_area
));
// Step 4: Build the contour set from the compact heightfield
let contour_set = rcAllocContourSet();
let max_error = 1.5;
let max_edge_len = (12.0 / cell_size) as i32;
let build_flags = rcBuildContoursFlags_RC_CONTOUR_TESS_WALL_EDGES as i32;
assert!(rcBuildContours(
context,
compact_heightfield,
max_error,
max_edge_len,
contour_set,
build_flags
));
assert!((*contour_set).nconts > 0);
// Step 5: Build the polymesh out of the contour set
let poly_mesh = rcAllocPolyMesh();
let nvp = 6;
assert!(rcBuildPolyMesh(context, contour_set, nvp, poly_mesh));
assert!((*poly_mesh).verts != null_mut());
assert!((*poly_mesh).nverts > 0);
let nvp = (*poly_mesh).nvp;
let cs = (*poly_mesh).cs;
let ch = (*poly_mesh).ch;
let orig = (*poly_mesh).bmin;
// add polymesh to visualization
{
let mut mesh = Mesh::new(PrimitiveTopology::TriangleList, RenderAssetUsages::all());
let mut positions = Vec::new();
for i in 0..(*poly_mesh).nverts as usize {
let v = (*poly_mesh).verts.wrapping_add(i * 3);
let x = orig[0] + *v as f32 * cs as f32;
let y = orig[1] + (*v.wrapping_add(1) + 1) as f32 * ch as f32 + 0.1;
let z = orig[2] + (*v.wrapping_add(2)) as f32 * cs as f32;
positions.push(Vec3::new(x, y, z));
}
mesh.insert_attribute(Mesh::ATTRIBUTE_POSITION, positions.clone());
let mut indices = Vec::new();
for i in 0..(*poly_mesh).npolys as usize {
let p = (*poly_mesh).polys.wrapping_add(i * nvp as usize * 2);
for j in 2..nvp as usize {
if *(p.wrapping_add(j)) == RC_MESH_NULL_IDX {
break;
}
indices.push(*p);
indices.push(*p.wrapping_add(j - 1));
indices.push(*p.wrapping_add(j));
}
}
mesh.insert_indices(Indices::U16(indices.clone()));
//mesh.compute_normals();
// insert into 3d scene
commands.spawn((
Mesh3d(meshes.add(mesh)),
MeshMaterial3d(materials.add(Color::srgba(0.0, 0.0, 1.0, 0.5))),
Pickable::IGNORE,
Wireframe,
));
}
let flags =
std::slice::from_raw_parts_mut((*poly_mesh).flags, (*poly_mesh).npolys as usize);
for flag in flags {
*flag = 1;
}
// Step 6: Build the polymesh detail
let poly_mesh_detail = rcAllocPolyMeshDetail();
let sample_dist = 1.0;
let sample_max_error = 0.1;
assert!(rcBuildPolyMeshDetail(
context,
poly_mesh,
compact_heightfield,
sample_dist,
sample_max_error,
poly_mesh_detail
));
let mut create_params = dtNavMeshCreateParams {
// Polygon Mesh Attributes
verts: (*poly_mesh).verts,
vertCount: (*poly_mesh).nverts,
polys: (*poly_mesh).polys,
polyFlags: (*poly_mesh).flags,
polyAreas: (*poly_mesh).areas,
polyCount: (*poly_mesh).npolys,
nvp: (*poly_mesh).nvp,
// Height Detail Attributes
detailMeshes: (*poly_mesh_detail).meshes,
detailVerts: (*poly_mesh_detail).verts,
detailVertsCount: (*poly_mesh_detail).nverts,
detailTris: (*poly_mesh_detail).tris,
detailTriCount: (*poly_mesh_detail).ntris,
// Off-Mesh Connections Attributes
offMeshConVerts: null(),
offMeshConRad: null(),
offMeshConFlags: null(),
offMeshConAreas: null(),
offMeshConDir: null(),
offMeshConUserID: null(),
offMeshConCount: 0,
// Tile Attributes
userId: 0,
tileX: 0,
tileY: 0,
tileLayer: 0,
bmin: (*poly_mesh).bmin,
bmax: (*poly_mesh).bmax,
// General Configuration Attributes
walkableHeight: walkable_height as f32,
walkableRadius: walkable_radius,
walkableClimb: walkable_climb as f32,
cs: cell_size,
ch: cell_height,
buildBvTree: true,
};
let mut out_data: *mut u8 = null_mut();
let mut out_data_size = 0;
assert!(dtCreateNavMeshData(
&mut create_params,
&mut out_data,
&mut out_data_size
));
assert!(out_data != null_mut());
assert!(out_data_size > 0);
navigation_state.navmesh = Navmesh::new(
NavmeshParams {
orig: (*poly_mesh).bmin,
tile_width: (*poly_mesh).bmax[0] - (*poly_mesh).bmin[0],
tile_height: (*poly_mesh).bmax[2] - (*poly_mesh).bmin[2],
max_tiles: 1,
max_polys: (*poly_mesh).npolys,
},
Vec::from_raw_parts(out_data, out_data_size as usize, out_data_size as usize),
);
// TODO: output in the correct directory
let serialized_navmesh = navigation_state.navmesh.write_to_buffer().unwrap();
std::fs::write("test.nvm", &serialized_navmesh).unwrap();
}
// camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(55.0, 55.0, 55.0).looking_at(Vec3::ZERO, Vec3::Y),
));
}
fn draw_mesh_intersections(
pointers: Query<&PointerInteraction>,
mut gizmos: Gizmos,
mut navigate_events: EventReader<Navigate>,
mut origin_events: EventReader<SetOrigin>,
mut target_events: EventReader<SetTarget>,
mut navigation_state: ResMut<NavigationState>,
) {
gizmos.sphere(navigation_state.from_position, 0.05, GREEN_100);
gizmos.sphere(navigation_state.to_position, 0.05, BLUE_100);
for pos in &navigation_state.path {
gizmos.sphere(*pos, 0.05, RED_500);
}
for (point, normal) in pointers
.iter()
.filter_map(|interaction| interaction.get_nearest_hit())
.filter_map(|(_entity, hit)| hit.position.zip(hit.normal))
{
gizmos.sphere(point, 0.05, RED_500);
gizmos.arrow(point, point + normal.normalize() * 0.5, PINK_100);
}
for event in origin_events.read() {
navigation_state.from_position = event.0;
}
for event in target_events.read() {
navigation_state.to_position = event.0;
}
for _ in navigate_events.read() {
navigation_state.calculate_path();
}
}