1
Fork 0
mirror of https://github.com/redstrate/Novus.git synced 2025-04-21 19:57:44 +00:00

Add material and texture support to mdlviewer, renderer

This commit is contained in:
Joshua Goins 2022-08-11 17:53:56 -04:00
parent 2b79c33d1f
commit ab0d0a7d1e
8 changed files with 396 additions and 39 deletions

View file

@ -1,20 +1,30 @@
#pragma once
#include <QMainWindow>
#include <unordered_map>
#include <QComboBox>
#include <QMainWindow>
#include <fmt/format.h>
#include <physis.hpp>
#include <unordered_map>
#include "renderer.hpp"
struct ModelInfo {
int primaryID;
int gearVersion = 1;
};
struct GearInfo {
std::string name;
Slot slot;
ModelInfo modelInfo;
std::string getMtrlPath(int raceID) {
return fmt::format("chara/equipment/e{gearId:04d}/material/v{gearVersion:04d}/mt_c{raceId:04d}e{gearId:04d}_{slot}_a.mtrl",
fmt::arg("gearId", modelInfo.primaryID),
fmt::arg("gearVersion", modelInfo.gearVersion),
fmt::arg("raceId", raceID),
fmt::arg("slot", physis_get_slot_name(slot)));
}
};
class GameData;
@ -39,7 +49,9 @@ private:
struct LoadedGear {
GearInfo* gearInfo;
physis_MDL model;
physis_Material material;
RenderModel renderModel;
RenderTexture renderTexture;
};
struct BoneExtra {

View file

@ -458,6 +458,14 @@ void MainWindow::reloadGearModel() {
loadedGear.model = physis_mdl_parse(mdl_data.size, mdl_data.data);
std::string mtrl_path = loadedGear.gearInfo->getMtrlPath(101);
qDebug() << "MTRL path: " << mtrl_path.c_str();
if(physis_gamedata_exists(&data, mtrl_path.c_str())) {
qDebug() << "loading mtrl...";
loadedGear.material = physis_material_parse(physis_gamedata_extract_file(&data, mtrl_path.c_str()));
}
lodCombo->clear();
for(int i = 0; i < loadedGear.model.num_lod; i++)
lodCombo->addItem(QString::number(i));
@ -486,6 +494,14 @@ void MainWindow::calculate_bone(physis_Skeleton& skeleton, physis_Bone& bone, co
void MainWindow::reloadGearAppearance() {
loadedGear.renderModel = renderer->addModel(loadedGear.model, currentLod);
if(loadedGear.material.num_textures > 0) {
auto texture = physis_texture_parse(physis_gamedata_extract_file(&data, loadedGear.material.textures[0]));
loadedGear.renderTexture = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
loadedGear.renderModel.texture = &loadedGear.renderTexture;
}
calculate_bone(skeleton, *skeleton.root_bone, nullptr);
// we want to map the actual affected bones to bone ids

View file

@ -4,6 +4,7 @@
#include <vector>
#include <array>
#include <glm/ext/matrix_float4x4.hpp>
#include <map>
#include <physis.hpp>
@ -14,10 +15,19 @@ struct RenderPart {
VkDeviceMemory vertexMemory, indexMemory;
};
struct RenderTexture {
VkImage handle = VK_NULL_HANDLE;
VkDeviceMemory memory = VK_NULL_HANDLE;
VkImageView view = VK_NULL_HANDLE;
VkSampler sampler = VK_NULL_HANDLE;
};
struct RenderModel {
physis_MDL model;
std::vector<RenderPart> parts;
std::array<glm::mat4, 128> boneData;
RenderTexture* texture = nullptr;
};
class Renderer {
@ -31,6 +41,7 @@ public:
void resize(VkSurfaceKHR surface, int width, int height);
RenderModel addModel(const physis_MDL& model, int lod);
RenderTexture addTexture(uint32_t width, uint32_t height, const uint8_t* data, uint32_t data_size);
void render(std::vector<RenderModel> models);
@ -59,7 +70,8 @@ public:
VkBuffer boneInfoBuffer = VK_NULL_HANDLE;
VkDeviceMemory boneInfoMemory = VK_NULL_HANDLE;
VkDescriptorSetLayout setLayout = VK_NULL_HANDLE;
VkDescriptorSet set = VK_NULL_HANDLE;
std::map<VkImage, VkDescriptorSet> cachedDescriptors;
VkPipeline pipeline;
VkPipelineLayout pipelineLayout;
@ -71,4 +83,16 @@ public:
VkShaderModule createShaderModule(const uint32_t *code, const int length);
VkShaderModule loadShaderFromDisk(const std::string_view path);
VkCommandBuffer beginSingleTimeCommands();
void endSingleTimeCommands(VkCommandBuffer pT);
void inlineTransitionImageLayout(VkCommandBuffer commandBuffer, VkImage image, VkFormat format,
VkImageAspectFlags aspect, VkImageSubresourceRange range,
VkImageLayout oldLayout, VkImageLayout newLayout,
VkPipelineStageFlags src_stage_mask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VkPipelineStageFlags dst_stage_mask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
VkDescriptorSet createDescriptorFor(RenderTexture& texture);
};

View file

@ -2,9 +2,12 @@
layout(location = 0) in vec3 inNormal;
layout(location = 1) in vec3 inFragPos;
layout(location = 2) in vec2 inUV;
layout(location = 0) out vec4 outColor;
layout(binding = 3) uniform sampler2D tex;
void main() {
const vec3 lightPos = vec3(3);
@ -13,5 +16,5 @@ void main() {
float diff = max(dot(norm, lightDir), 0.0);
outColor = vec4(1.0) * diff;
outColor = texture(tex, inUV) * diff;
}

Binary file not shown.

View file

@ -2,11 +2,13 @@
layout(location = 0) in vec3 inPosition;
layout(location = 1) in vec3 inNormal;
layout(location = 2) in vec4 inBoneWeights;
layout(location = 3) in uvec4 inBoneIds;
layout(location = 2) in vec2 inUV;
layout(location = 3) in vec4 inBoneWeights;
layout(location = 4) in uvec4 inBoneIds;
layout(location = 0) out vec3 outNormal;
layout(location = 1) out vec3 outFragPos;
layout(location = 2) out vec2 outUV;
layout(push_constant) uniform PushConstant {
mat4 vp, model;
@ -31,4 +33,5 @@ void main() {
gl_Position = vp * bPos;
outNormal = bNor.xyz;
outFragPos = vec3(model * vec4(inPosition, 1.0));
outUV = inUV;
}

Binary file not shown.

View file

@ -9,6 +9,33 @@
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/transform.hpp>
VkResult CreateDebugUtilsMessengerEXT(
VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDebugUtilsMessengerEXT* pCallback) {
// Note: It seems that static_cast<...> doesn't work. Use the C-style forced
// cast.
auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
instance, "vkCreateDebugUtilsMessengerEXT");
if (func != nullptr) {
return func(instance, pCreateInfo, pAllocator, pCallback);
} else {
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
VKAPI_ATTR VkBool32 VKAPI_CALL
DebugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
void* pUserData) {
fmt::print("{}\n", pCallbackData->pMessage);
return VK_FALSE;
}
Renderer::Renderer() {
VkApplicationInfo applicationInfo = {};
@ -30,13 +57,28 @@ Renderer::Renderer() {
}
}
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo = {};
debugCreateInfo.sType =
VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
debugCreateInfo.messageSeverity =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
debugCreateInfo.messageType =
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT;
debugCreateInfo.pfnUserCallback = DebugCallback;
VkInstanceCreateInfo createInfo = {};
createInfo.pNext = &debugCreateInfo;
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.ppEnabledExtensionNames = instanceExtensions.data();
createInfo.enabledExtensionCount = instanceExtensions.size();
vkCreateInstance(&createInfo, nullptr, &instance);
VkDebugUtilsMessengerEXT callback;
CreateDebugUtilsMessengerEXT(instance, &debugCreateInfo, nullptr,
&callback);
// pick physical device
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
@ -440,7 +482,13 @@ void Renderer::render(std::vector<RenderModel> models) {
vkUnmapMemory(device, boneInfoMemory);
}
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &set, 0, nullptr);
if(model.texture == nullptr)
continue;
if(!cachedDescriptors.count(model.texture->handle))
cachedDescriptors[model.texture->handle] = createDescriptorFor(*model.texture);
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &cachedDescriptors[model.texture->handle], 0, nullptr);
for(const auto& part : model.parts) {
VkDeviceSize offsets[] = {0};
@ -646,17 +694,22 @@ void Renderer::initPipeline() {
normalAttribute.location = 1;
normalAttribute.offset = offsetof(Vertex, normal);
VkVertexInputAttributeDescription uvAttribute = {};
uvAttribute.format = VK_FORMAT_R32G32_SFLOAT;
uvAttribute.location = 2;
uvAttribute.offset = offsetof(Vertex, uv);
VkVertexInputAttributeDescription boneWeightAttribute = {};
boneWeightAttribute.format = VK_FORMAT_R32G32B32_SFLOAT;
boneWeightAttribute.location = 2;
boneWeightAttribute.location = 3;
boneWeightAttribute.offset = offsetof(Vertex, bone_weight);
VkVertexInputAttributeDescription boneIdAttribute = {};
boneIdAttribute.format = VK_FORMAT_R8G8B8A8_UINT;
boneIdAttribute.location = 3;
boneIdAttribute.location = 4;
boneIdAttribute.offset = offsetof(Vertex, bone_id);
std::array<VkVertexInputAttributeDescription, 4> attributes = {positionAttribute, normalAttribute, boneWeightAttribute, boneIdAttribute};
const std::array attributes = {positionAttribute, normalAttribute, uvAttribute, boneWeightAttribute, boneIdAttribute};
VkPipelineVertexInputStateCreateInfo vertexInputState = {};
vertexInputState.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
@ -774,13 +827,19 @@ VkShaderModule Renderer::loadShaderFromDisk(const std::string_view path) {
void Renderer::initDescriptors() {
VkDescriptorPoolSize poolSize = {};
poolSize.type = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
poolSize.descriptorCount = 1;
poolSize.descriptorCount = 50;
VkDescriptorPoolSize poolSize2 = {};
poolSize2.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
poolSize2.descriptorCount = 50;
const std::array poolSizes = {poolSize, poolSize2};
VkDescriptorPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolCreateInfo.poolSizeCount = 1;
poolCreateInfo.pPoolSizes = &poolSize;
poolCreateInfo.maxSets = 1;
poolCreateInfo.poolSizeCount = poolSizes.size();
poolCreateInfo.pPoolSizes = poolSizes.data();
poolCreateInfo.maxSets = 50;
vkCreateDescriptorPool(device, &poolCreateInfo, nullptr, &descriptorPool);
@ -790,10 +849,18 @@ void Renderer::initDescriptors() {
boneInfoBufferBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
boneInfoBufferBinding.binding = 2;
VkDescriptorSetLayoutCreateInfo layoutInfo{};
VkDescriptorSetLayoutBinding textureBinding = {};
textureBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
textureBinding.descriptorCount = 1;
textureBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
textureBinding.binding = 3;
const std::array bindings = {boneInfoBufferBinding, textureBinding};
VkDescriptorSetLayoutCreateInfo layoutInfo = {};
layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = 1;
layoutInfo.pBindings = &boneInfoBufferBinding;
layoutInfo.bindingCount = bindings.size();
layoutInfo.pBindings = bindings.data();
vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, &setLayout);
@ -802,28 +869,6 @@ void Renderer::initDescriptors() {
boneInfoBuffer = buffer;
boneInfoMemory = memory;
VkDescriptorSetAllocateInfo allocateInfo = {};
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocateInfo.descriptorPool = descriptorPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &setLayout;
vkAllocateDescriptorSets(device, &allocateInfo, &set);
VkDescriptorBufferInfo bufferInfo = {};
bufferInfo.buffer = boneInfoBuffer;
bufferInfo.range = bufferSize;
VkWriteDescriptorSet descriptorWrite{};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = set;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorWrite.descriptorCount = 1;
descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.dstBinding = 2;
vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, nullptr);
}
void Renderer::initDepth(int width, int height) {
@ -867,3 +912,257 @@ void Renderer::initDepth(int width, int height) {
vkCreateImageView(device, &viewCreateInfo, nullptr, &depthView);
}
RenderTexture Renderer::addTexture(const uint32_t width, const uint32_t height, const uint8_t* data, const uint32_t data_size) {
RenderTexture newTexture = {};
VkImageCreateInfo imageInfo = {};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
vkCreateImage(device, &imageInfo, nullptr, &newTexture.handle);
VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(device, newTexture.handle, &memRequirements);
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(
memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
vkAllocateMemory(device, &allocInfo, nullptr, &newTexture.memory);
vkBindImageMemory(device, newTexture.handle, newTexture.memory, 0);
// copy image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingBufferMemory;
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = data_size;
bufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vkCreateBuffer(device, &bufferInfo, nullptr, &stagingBuffer);
// allocate staging memory
vkGetBufferMemoryRequirements(device, stagingBuffer, &memRequirements);
allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex =
findMemoryType(memRequirements.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
vkAllocateMemory(device, &allocInfo, nullptr, &stagingBufferMemory);
vkBindBufferMemory(device, stagingBuffer, stagingBufferMemory, 0);
// copy to staging buffer
void* mapped_data;
vkMapMemory(device, stagingBufferMemory, 0, data_size, 0, &mapped_data);
memcpy(mapped_data, data, data_size);
vkUnmapMemory(device, stagingBufferMemory);
// copy staging buffer to image
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkImageSubresourceRange range = {};
range.baseMipLevel = 0;
range.levelCount = 1;
range.baseArrayLayer = 0;
range.layerCount = 1;
inlineTransitionImageLayout(commandBuffer, newTexture.handle,
imageInfo.format, VK_IMAGE_ASPECT_COLOR_BIT,
range, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkBufferImageCopy region = {};
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = 0;
region.imageSubresource.layerCount = 1;
region.imageExtent = {(uint32_t)width,
(uint32_t)height, 1};
vkCmdCopyBufferToImage(commandBuffer, stagingBuffer, newTexture.handle,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
inlineTransitionImageLayout(commandBuffer, newTexture.handle,
imageInfo.format, VK_IMAGE_ASPECT_COLOR_BIT,
range, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
endSingleTimeCommands(commandBuffer);
range = {};
range.levelCount = 1;
range.layerCount = 1;
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = newTexture.handle;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = imageInfo.format;
viewInfo.subresourceRange = range;
vkCreateImageView(device, &viewInfo, nullptr, &newTexture.view);
VkSamplerCreateInfo samplerInfo = {};
samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.maxLod = 1.0f;
vkCreateSampler(device, &samplerInfo, nullptr, &newTexture.sampler);
return newTexture;
}
VkCommandBuffer Renderer::beginSingleTimeCommands() {
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = commandPool;
allocInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer;
vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
return commandBuffer;
}
void Renderer::endSingleTimeCommands(VkCommandBuffer commandBuffer) {
vkEndCommandBuffer(commandBuffer);
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
vkQueueWaitIdle(graphicsQueue);
vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
}
void Renderer::inlineTransitionImageLayout(VkCommandBuffer commandBuffer, VkImage image, VkFormat format,
VkImageAspectFlags aspect, VkImageSubresourceRange range,
VkImageLayout oldLayout, VkImageLayout newLayout,
VkPipelineStageFlags src_stage_mask, VkPipelineStageFlags dst_stage_mask) {
VkImageMemoryBarrier barrier = {};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = oldLayout;
barrier.newLayout = newLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange = range;
barrier.subresourceRange.aspectMask = aspect;
switch (oldLayout) {
case VK_IMAGE_LAYOUT_UNDEFINED:
barrier.srcAccessMask = 0;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_GENERAL:
barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
break;
default:
break;
}
switch (newLayout) {
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_GENERAL:
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
default:
break;
}
vkCmdPipelineBarrier(commandBuffer, src_stage_mask, dst_stage_mask, 0, 0,
nullptr, 0, nullptr, 1, &barrier);
}
VkDescriptorSet Renderer::createDescriptorFor(RenderTexture &texture) {
VkDescriptorSet set;
VkDescriptorSetAllocateInfo allocateInfo = {};
allocateInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocateInfo.descriptorPool = descriptorPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &setLayout;
vkAllocateDescriptorSets(device, &allocateInfo, &set);
const size_t bufferSize = sizeof(glm::mat4) * 128;
VkDescriptorBufferInfo bufferInfo = {};
bufferInfo.buffer = boneInfoBuffer;
bufferInfo.range = bufferSize;
VkWriteDescriptorSet descriptorWrite = {};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = set;
descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorWrite.descriptorCount = 1;
descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.dstBinding = 2;
VkDescriptorImageInfo imageInfo = {};
imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = texture.view;
imageInfo.sampler = texture.sampler;
VkWriteDescriptorSet descriptorWrite2 = {};
descriptorWrite2.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite2.dstSet = set;
descriptorWrite2.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptorWrite2.descriptorCount = 1;
descriptorWrite2.pImageInfo = &imageInfo;
descriptorWrite2.dstBinding = 3;
const std::array writes = {descriptorWrite, descriptorWrite2};
vkUpdateDescriptorSets(device, writes.size(), writes.data(), 0, nullptr);
return set;
}