// SPDX-FileCopyrightText: 2023 Joshua Goins // SPDX-License-Identifier: GPL-3.0-or-later #include "mdlpart.h" #include "glm/gtx/transform.hpp" #include #include #include #include #include #include #include #include #include #include #include #include "filecache.h" #include "tiny_gltf.h" #include "vulkanwindow.h" MDLPart::MDLPart(GameData *data, FileCache &cache) : data(data) , cache(cache) { auto viewportLayout = new QVBoxLayout(); viewportLayout->setContentsMargins(0, 0, 0, 0); setLayout(viewportLayout); pbd = physis_parse_pbd(physis_gamedata_extract_file(data, "chara/xls/bonedeformer/human.pbd")); renderer = new Renderer(); auto inst = new QVulkanInstance(); inst->setVkInstance(renderer->instance); inst->setFlags(QVulkanInstance::Flag::NoDebugOutputRedirect); inst->create(); vkWindow = new VulkanWindow(this, renderer, inst); vkWindow->setVulkanInstance(inst); auto widget = QWidget::createWindowContainer(vkWindow); viewportLayout->addWidget(widget); connect(this, &MDLPart::modelChanged, this, &MDLPart::reloadRenderer); connect(this, &MDLPart::skeletonChanged, this, &MDLPart::reloadBoneData); } void MDLPart::exportModel(const QString &fileName) { const int selectedModel = 0; const int selectedLod = 0; const physis_MDL &model = models[selectedModel].model; const physis_LOD &lod = model.lods[selectedLod]; tinygltf::Model gltfModel; gltfModel.asset.generator = "Novus"; // TODO: just write the code better! dummy!! gltfModel.nodes.reserve(1 + model.num_affected_bones + lod.num_parts); auto &gltfSkeletonNode = gltfModel.nodes.emplace_back(); gltfSkeletonNode.name = skeleton->root_bone->name; for (int i = 0; i < model.num_affected_bones; i++) { auto &node = gltfModel.nodes.emplace_back(); node.name = model.affected_bone_names[i]; int real_bone_id = 0; for (int k = 0; k < skeleton->num_bones; k++) { if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) { real_bone_id = k; } } auto &real_bone = skeleton->bones[real_bone_id]; node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]}; node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]}; node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]}; } // setup parenting for (int i = 0; i < model.num_affected_bones; i++) { int real_bone_id = 0; for (int k = 0; k < skeleton->num_bones; k++) { if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) { real_bone_id = k; } } auto &real_bone = skeleton->bones[real_bone_id]; if (real_bone.parent_bone != nullptr) { bool found = false; for (int k = 0; k < model.num_affected_bones; k++) { if (strcmp(model.affected_bone_names[k], real_bone.parent_bone->name) == 0) { gltfModel.nodes[k + 1].children.push_back(i + 1); // +1 for the skeleton node taking up the first index found = true; } } // Find the next closest bone that isn't a direct descendant // of n_root, but won't have a parent anyway if (!found) { gltfSkeletonNode.children.push_back(i + 1); } } else { gltfSkeletonNode.children.push_back(i + 1); } } auto &gltfSkin = gltfModel.skins.emplace_back(); gltfSkin.name = gltfSkeletonNode.name; gltfSkin.skeleton = 0; for (int i = 1; i < gltfModel.nodes.size(); i++) { gltfSkin.joints.push_back(i); } // Inverse bind matrices { gltfSkin.inverseBindMatrices = gltfModel.accessors.size(); auto &inverseAccessor = gltfModel.accessors.emplace_back(); inverseAccessor.bufferView = gltfModel.bufferViews.size(); inverseAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; inverseAccessor.count = model.num_affected_bones; inverseAccessor.type = TINYGLTF_TYPE_MAT4; auto &inverseBufferView = gltfModel.bufferViews.emplace_back(); inverseBufferView.buffer = gltfModel.buffers.size(); auto &inverseBuffer = gltfModel.buffers.emplace_back(); for (int i = 0; i < model.num_affected_bones; i++) { int real_bone_id = 0; for (int k = 0; k < skeleton->num_bones; k++) { if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) { real_bone_id = k; } } auto &real_bone = skeleton->bones[real_bone_id]; auto inverseMatrix = boneData[real_bone.index].inversePose; auto inverseMatrixCPtr = reinterpret_cast(glm::value_ptr(inverseMatrix)); inverseBuffer.data.insert(inverseBuffer.data.end(), inverseMatrixCPtr, inverseMatrixCPtr + sizeof(float) * 16); } inverseBufferView.byteLength = inverseBuffer.data.size(); } for (int i = 0; i < lod.num_parts; i++) { gltfSkeletonNode.children.push_back(gltfModel.nodes.size()); auto &gltfNode = gltfModel.nodes.emplace_back(); gltfNode.name = models[0].name.toStdString() + " Part " + std::to_string(i) + ".0"; gltfNode.skin = 0; gltfNode.mesh = gltfModel.meshes.size(); auto &gltfMesh = gltfModel.meshes.emplace_back(); gltfMesh.name = gltfNode.name + " Mesh Attribute"; auto &gltfPrimitive = gltfMesh.primitives.emplace_back(); gltfPrimitive.attributes["POSITION"] = gltfModel.accessors.size(); gltfPrimitive.attributes["TEXCOORD_0"] = gltfModel.accessors.size() + 1; gltfPrimitive.attributes["TEXCOORD_1"] = gltfModel.accessors.size() + 2; gltfPrimitive.attributes["NORMAL"] = gltfModel.accessors.size() + 3; gltfPrimitive.attributes["COLOR_0"] = gltfModel.accessors.size() + 6; gltfPrimitive.attributes["WEIGHTS_0"] = gltfModel.accessors.size() + 7; gltfPrimitive.attributes["JOINTS_0"] = gltfModel.accessors.size() + 8; gltfPrimitive.mode = TINYGLTF_MODE_TRIANGLES; // Vertices { auto &positionAccessor = gltfModel.accessors.emplace_back(); positionAccessor.bufferView = gltfModel.bufferViews.size(); positionAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; positionAccessor.count = lod.parts[i].num_vertices; positionAccessor.type = TINYGLTF_TYPE_VEC3; auto &uv0Accessor = gltfModel.accessors.emplace_back(); uv0Accessor.bufferView = gltfModel.bufferViews.size(); uv0Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; uv0Accessor.count = lod.parts[i].num_vertices; uv0Accessor.type = TINYGLTF_TYPE_VEC2; uv0Accessor.byteOffset = offsetof(Vertex, uv0); auto &uv1Accessor = gltfModel.accessors.emplace_back(); uv1Accessor.bufferView = gltfModel.bufferViews.size(); uv1Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; uv1Accessor.count = lod.parts[i].num_vertices; uv1Accessor.type = TINYGLTF_TYPE_VEC2; uv1Accessor.byteOffset = offsetof(Vertex, uv1); auto &normalAccessor = gltfModel.accessors.emplace_back(); normalAccessor.bufferView = gltfModel.bufferViews.size(); normalAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; normalAccessor.count = lod.parts[i].num_vertices; normalAccessor.type = TINYGLTF_TYPE_VEC3; normalAccessor.byteOffset = offsetof(Vertex, normal); auto &tangent1Accessor = gltfModel.accessors.emplace_back(); tangent1Accessor.bufferView = gltfModel.bufferViews.size(); tangent1Accessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE; tangent1Accessor.count = lod.parts[i].num_vertices; tangent1Accessor.type = TINYGLTF_TYPE_VEC4; tangent1Accessor.byteOffset = offsetof(Vertex, tangent1); auto &tangent2Accessor = gltfModel.accessors.emplace_back(); tangent2Accessor.bufferView = gltfModel.bufferViews.size(); tangent2Accessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE; tangent2Accessor.count = lod.parts[i].num_vertices; tangent2Accessor.type = TINYGLTF_TYPE_VEC4; tangent2Accessor.byteOffset = offsetof(Vertex, tangent2); auto &colorAccessor = gltfModel.accessors.emplace_back(); colorAccessor.bufferView = gltfModel.bufferViews.size(); colorAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; colorAccessor.count = lod.parts[i].num_vertices; colorAccessor.type = TINYGLTF_TYPE_VEC4; colorAccessor.byteOffset = offsetof(Vertex, color); auto &boneWeightAccessor = gltfModel.accessors.emplace_back(); boneWeightAccessor.bufferView = gltfModel.bufferViews.size(); boneWeightAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; boneWeightAccessor.count = lod.parts[i].num_vertices; boneWeightAccessor.type = TINYGLTF_TYPE_VEC4; boneWeightAccessor.byteOffset = offsetof(Vertex, bone_weight); auto &boneIdAccessor = gltfModel.accessors.emplace_back(); boneIdAccessor.bufferView = gltfModel.bufferViews.size(); boneIdAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE; boneIdAccessor.count = lod.parts[i].num_vertices; boneIdAccessor.type = TINYGLTF_TYPE_VEC4; boneIdAccessor.byteOffset = offsetof(Vertex, bone_id); auto &vertexBufferView = gltfModel.bufferViews.emplace_back(); vertexBufferView.buffer = gltfModel.buffers.size(); vertexBufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER; auto &vertexBuffer = gltfModel.buffers.emplace_back(); vertexBuffer.data.resize(lod.parts[i].num_vertices * sizeof(Vertex)); memcpy(vertexBuffer.data.data(), lod.parts[i].vertices, vertexBuffer.data.size()); vertexBufferView.byteLength = vertexBuffer.data.size(); vertexBufferView.byteStride = sizeof(Vertex); } // Indices { gltfPrimitive.indices = gltfModel.accessors.size(); auto &indexAccessor = gltfModel.accessors.emplace_back(); indexAccessor.bufferView = gltfModel.bufferViews.size(); indexAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT; indexAccessor.count = lod.parts[i].num_indices; indexAccessor.type = TINYGLTF_TYPE_SCALAR; auto &indexBufferView = gltfModel.bufferViews.emplace_back(); indexBufferView.buffer = gltfModel.buffers.size(); indexBufferView.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER; auto &indexBuffer = gltfModel.buffers.emplace_back(); indexBuffer.data.resize(lod.parts[i].num_indices * sizeof(uint16_t)); memcpy(indexBuffer.data.data(), lod.parts[i].indices, indexBuffer.data.size()); indexBufferView.byteLength = indexBuffer.data.size(); indexBufferView.byteStride = sizeof(uint16_t); } } auto &scene = gltfModel.scenes.emplace_back(); scene.name = models[0].name.toStdString(); scene.nodes = {0}; tinygltf::TinyGLTF loader; loader.WriteGltfSceneToFile(&gltfModel, fileName.toStdString(), true, true, false, true); } RenderModel &MDLPart::getModel(const int index) { return models[index]; } void MDLPart::reloadModel(const int index) { renderer->reloadModel(models[index], 0); Q_EMIT modelChanged(); } void MDLPart::clear() { models.clear(); Q_EMIT modelChanged(); } void MDLPart::addModel(physis_MDL mdl, const QString &name, std::vector materials, int lod, uint16_t fromBodyId, uint16_t toBodyId) { qDebug() << "Adding model to MDLPart"; auto model = renderer->addModel(mdl, lod); model.name = name; model.from_body_id = fromBodyId; model.to_body_id = toBodyId; std::transform(materials.begin(), materials.end(), std::back_inserter(model.materials), [this](const physis_Material &mat) { return createMaterial(mat); }); if (materials.empty()) { model.materials.push_back(createMaterial(physis_Material{})); } models.push_back(model); Q_EMIT modelChanged(); } void MDLPart::setSkeleton(physis_Skeleton newSkeleton) { skeleton = std::make_unique(newSkeleton); firstTimeSkeletonDataCalculated = false; Q_EMIT skeletonChanged(); } void MDLPart::clearSkeleton() { skeleton.reset(); firstTimeSkeletonDataCalculated = false; Q_EMIT skeletonChanged(); } void MDLPart::reloadRenderer() { reloadBoneData(); vkWindow->models = models; } void MDLPart::reloadBoneData() { if (skeleton) { if (!firstTimeSkeletonDataCalculated) { if (boneData.empty()) { boneData.resize(skeleton->num_bones); } calculateBoneInversePose(*skeleton, *skeleton->root_bone, nullptr); for (auto &bone : boneData) { bone.inversePose = glm::inverse(bone.inversePose); } firstTimeSkeletonDataCalculated = true; } // update data calculateBone(*skeleton, *skeleton->root_bone, nullptr); for (auto &model : models) { // we want to map the actual affected bones to bone ids std::map boneMapping; for (int i = 0; i < model.model.num_affected_bones; i++) { for (int k = 0; k < skeleton->num_bones; k++) { if (std::string_view{skeleton->bones[k].name} == std::string_view{model.model.affected_bone_names[i]}) { boneMapping[i] = k; } } } std::vector deformBones(model.model.num_affected_bones); for (int i = 0; i < model.model.num_affected_bones; i++) { deformBones[i] = glm::mat4(1.0f); } // get deform matrices auto deform = physis_pbd_get_deform_matrix(pbd, model.from_body_id, model.to_body_id); if (deform.num_bones != 0) { for (int i = 0; i < deform.num_bones; i++) { auto deformBone = deform.bones[i]; for (int k = 0; k < model.model.num_affected_bones; k++) { if (std::string_view{model.model.affected_bone_names[k]} == std::string_view{deformBone.name}) { deformBones[k] = glm::mat4{deformBone.deform[0], deformBone.deform[1], deformBone.deform[2], deformBone.deform[3], deformBone.deform[4], deformBone.deform[5], deformBone.deform[6], deformBone.deform[7], deformBone.deform[8], deformBone.deform[9], deformBone.deform[10], deformBone.deform[11], 0.0f, 0.0f, 0.0f, 1.0f}; } } } } for (int i = 0; i < model.model.num_affected_bones; i++) { const int originalBoneId = boneMapping[i]; model.boneData[i] = boneData[originalBoneId].localTransform * deformBones[i] * boneData[originalBoneId].inversePose; } } } } RenderMaterial MDLPart::createMaterial(const physis_Material &material) { RenderMaterial newMaterial; for (int i = 0; i < material.num_textures; i++) { std::string t = material.textures[i]; if (t.find("skin") != std::string::npos) { newMaterial.type = MaterialType::Skin; } char type = t[t.length() - 5]; switch (type) { case 'm': { auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i]))); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.multiTexture = new RenderTexture(tex); } case 'd': { auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i]))); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.diffuseTexture = new RenderTexture(tex); } break; case 'n': { auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i]))); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.normalTexture = new RenderTexture(tex); } break; case 's': { auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i]))); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.specularTexture = new RenderTexture(tex); } break; default: qDebug() << "unhandled type" << type; break; } } return newMaterial; } void MDLPart::calculateBoneInversePose(physis_Skeleton &skeleton, physis_Bone &bone, physis_Bone *parent_bone) { const glm::mat4 parentMatrix = parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].inversePose; glm::mat4 local = glm::mat4(1.0f); local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2])); local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2])); local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2])); boneData[bone.index].inversePose = parentMatrix * local; for (int i = 0; i < skeleton.num_bones; i++) { if (skeleton.bones[i].parent_bone != nullptr && std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) { calculateBoneInversePose(skeleton, skeleton.bones[i], &bone); } } } void MDLPart::calculateBone(physis_Skeleton &skeleton, physis_Bone &bone, const physis_Bone *parent_bone) { const glm::mat4 parent_matrix = parent_bone == nullptr ? glm::mat4(1.0f) : (boneData[parent_bone->index].localTransform); glm::mat4 local = glm::mat4(1.0f); local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2])); local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2])); local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2])); boneData[bone.index].localTransform = parent_matrix * local; boneData[bone.index].finalTransform = parent_matrix; for (int i = 0; i < skeleton.num_bones; i++) { if (skeleton.bones[i].parent_bone != nullptr && std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) { calculateBone(skeleton, skeleton.bones[i], &bone); } } } void MDLPart::removeModel(const physis_MDL &mdl) { models.erase(std::remove_if(models.begin(), models.end(), [mdl](const RenderModel other) { return mdl.lods == other.model.lods; }), models.end()); } #include "moc_mdlpart.cpp"