#include "mdlpart.h" #include "glm/gtx/transform.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #ifndef USE_STANDALONE_WINDOW class VulkanWindow : public QWindow { public: VulkanWindow(Renderer* renderer, QVulkanInstance* instance) : m_renderer(renderer), m_instance(instance) { setSurfaceType(VulkanSurface); setVulkanInstance(instance); } void exposeEvent(QExposeEvent *) { if (isExposed()) { if (!m_initialized) { m_initialized = true; auto surface = m_instance->surfaceForWindow(this); if(!m_renderer->initSwapchain(surface, width(), height())) m_initialized = false; else render(); } } } bool event(QEvent *e) { if (e->type() == QEvent::UpdateRequest) render(); if (e->type() == QEvent::Resize) { QResizeEvent* resizeEvent = (QResizeEvent*)e; auto surface = m_instance->surfaceForWindow(this); m_renderer->resize(surface, resizeEvent->size().width(), resizeEvent->size().height()); } return QWindow::event(e); } void render() { m_renderer->render(models); m_instance->presentQueued(this); requestUpdate(); } std::vector models; private: bool m_initialized = false; Renderer* m_renderer; QVulkanInstance* m_instance; }; #else #include "standalonewindow.h" #include "equipment.h" #endif MDLPart::MDLPart(GameData *data) : data(data) { auto viewportLayout = new QVBoxLayout(); setLayout(viewportLayout); renderer = new Renderer(); #ifndef USE_STANDALONE_WINDOW auto inst = new QVulkanInstance(); inst->setVkInstance(renderer->instance); inst->setFlags(QVulkanInstance::Flag::NoDebugOutputRedirect); inst->create(); vkWindow = new VulkanWindow(renderer, inst); vkWindow->setVulkanInstance(inst); auto widget = QWidget::createWindowContainer(vkWindow); viewportLayout->addWidget(widget); #else standaloneWindow = new StandaloneWindow(renderer); renderer->initSwapchain(standaloneWindow->getSurface(renderer->instance), 640, 480); QTimer* timer = new QTimer(); connect(timer, &QTimer::timeout, this, [this] { standaloneWindow->render(); }); timer->start(1000); #endif connect(this, &MDLPart::modelChanged, this, &MDLPart::reloadRenderer); connect(this, &MDLPart::skeletonChanged, this, &MDLPart::reloadBoneData); } void MDLPart::exportModel(const QString &fileName) { Assimp::Exporter exporter; aiScene scene; scene.mRootNode = new aiNode(); // TODO: hardcoded to the first model for now scene.mRootNode->mNumChildren = models[0].model.lods[0].num_parts + 1; // plus one for the skeleton scene.mRootNode->mChildren = new aiNode*[scene.mRootNode->mNumChildren]; scene.mNumMeshes = models[0].model.lods[0].num_parts; scene.mMeshes = new aiMesh*[scene.mNumMeshes]; auto skeleton_node = new aiNode(); skeleton_node->mName = "Skeleton"; skeleton_node->mNumChildren = 1; skeleton_node->mChildren = new aiNode*[skeleton_node->mNumChildren]; scene.mRootNode->mChildren[scene.mRootNode->mNumChildren - 1] = skeleton_node; std::vector skeletonNodes; for(int i = 0; i < models[0].model.num_affected_bones; i++) { auto& node = skeletonNodes.emplace_back(); node = new aiNode(); node->mName = models[0].model.affected_bone_names[i]; int real_bone_id = 0; for(int k = 0; k < skeleton->num_bones; k++) { if(strcmp(skeleton->bones[k].name, models[0].model.affected_bone_names[i]) == 0) { real_bone_id = k; } } node->mChildren = new aiNode*[models[0].model.num_affected_bones]; auto& real_bone = skeleton->bones[real_bone_id]; memcpy(&node->mTransformation, glm::value_ptr(boneData[real_bone.index].finalTransform), sizeof(aiMatrix4x4)); } // setup parenting for(int i = 0; i < models[0].model.num_affected_bones; i++) { int real_bone_id = 0; for(int k = 0; k < skeleton->num_bones; k++) { if(strcmp(skeleton->bones[k].name, models[0].model.affected_bone_names[i]) == 0) { real_bone_id = k; } } auto& real_bone = skeleton->bones[real_bone_id]; if(real_bone.parent_bone != nullptr) { for(int k = 0; k < models[0].model.num_affected_bones; k++) { if(strcmp(models[0].model.affected_bone_names[k], real_bone.parent_bone->name) == 0) { skeletonNodes[i]->mParent = skeletonNodes[k]; skeletonNodes[k]->mChildren[skeletonNodes[k]->mNumChildren++] = skeletonNodes[i]; } } } } skeleton_node->mChildren[0] = new aiNode(); skeleton_node->mChildren[0]->mName = "root"; skeleton_node->mChildren[0]->mChildren = new aiNode*[models[0].model.num_affected_bones]; for(int i = 0; i < skeletonNodes.size(); i++) { if(skeletonNodes[i]->mParent == nullptr) { skeleton_node->mChildren[0]->mChildren[skeleton_node->mChildren[0]->mNumChildren++] = skeletonNodes[i]; } } for(int i = 0; i < models[0].model.lods[0].num_parts; i++) { scene.mMeshes[i] = new aiMesh(); scene.mMeshes[i]->mMaterialIndex = 0; auto& node = scene.mRootNode->mChildren[i]; node = new aiNode(); node->mNumMeshes = 1; node->mMeshes = new unsigned int [scene.mRootNode->mNumMeshes]; node->mMeshes[0] = i; auto mesh = scene.mMeshes[i]; mesh->mNumVertices = models[0].model.lods[0].parts[i].num_vertices; mesh->mVertices = new aiVector3D [mesh->mNumVertices]; mesh->mNormals = new aiVector3D [mesh->mNumVertices]; mesh->mTextureCoords[0] = new aiVector3D [mesh->mNumVertices]; mesh->mNumUVComponents[0] = 2; for(int j = 0; j < mesh->mNumVertices; j++) { auto vertex = models[0].model.lods[0].parts[i].vertices[j]; mesh->mVertices[j] = aiVector3D(vertex.position[0], vertex.position[1], vertex.position[2]); mesh->mNormals[j] = aiVector3D (vertex.normal[0], vertex.normal[1], vertex.normal[2]); mesh->mTextureCoords[0][j] = aiVector3D(vertex.uv[0], vertex.uv[1], 0.0f); } mesh->mNumBones = models[0].model.num_affected_bones; mesh->mBones = new aiBone*[mesh->mNumBones]; for(int j = 0; j < mesh->mNumBones; j++) { int real_bone_id = j; // TODO: is this still relevant?5 /*for(int k = 0; k < skeleton.bones.size(); k++) { if(skeleton.bones[k].name == model.affectedBoneNames[j]) { real_bone_id = k; } }*/ mesh->mBones[j] = new aiBone(); mesh->mBones[j]->mName = models[0].model.affected_bone_names[j]; mesh->mBones[j]->mNumWeights = mesh->mNumVertices * 4; mesh->mBones[j]->mWeights = new aiVertexWeight[mesh->mBones[j]->mNumWeights]; mesh->mBones[j]->mNode = skeleton_node->mChildren[j]; for(int k = 0; k < mesh->mNumVertices; k++) { for(int z = 0; z < 4; z++) { if (models[0].model.lods[0].parts[i].vertices[k].bone_id[z] == real_bone_id) { auto &weight = mesh->mBones[j]->mWeights[k * 4 + z]; weight.mVertexId = k; weight.mWeight = models[0].model.lods[0].parts[i].vertices[k].bone_weight[z]; } } } } mesh->mNumFaces = models[0].model.lods[0].parts[i].num_indices / 3; mesh->mFaces = new aiFace[mesh->mNumFaces]; int lastFace = 0; for(int j = 0; j < models[0].model.lods[0].parts[i].num_indices; j += 3) { aiFace& face = mesh->mFaces[lastFace++]; face.mNumIndices = 3; face.mIndices = new unsigned int[face.mNumIndices]; face.mIndices[0] = models[0].model.lods[0].parts[i].indices[j]; face.mIndices[1] = models[0].model.lods[0].parts[i].indices[j + 1]; face.mIndices[2] = models[0].model.lods[0].parts[i].indices[j + 2]; } } scene.mNumMaterials = 1; scene.mMaterials = new aiMaterial*[1]; scene.mMaterials[0] = new aiMaterial(); exporter.Export(&scene, "fbx", fileName.toStdString()); } void MDLPart::clear() { models.clear(); Q_EMIT modelChanged(); } void MDLPart::addModel(physis_MDL mdl, std::vector materials, int lod) { qDebug() << "Adding model to MDLPart"; auto model = renderer->addModel(mdl, lod); std::transform(materials.begin(), materials.end(), std::back_inserter(model.materials), [this](const physis_Material& mat) { return createMaterial(mat); }); models.push_back(model); Q_EMIT modelChanged(); } void MDLPart::setSkeleton(physis_Skeleton newSkeleton) { skeleton = newSkeleton; Q_EMIT skeletonChanged(); } void MDLPart::clearSkeleton() { skeleton.reset(); Q_EMIT skeletonChanged(); } void MDLPart::reloadRenderer() { qDebug() << "Reloading render models..."; reloadBoneData(); #ifndef USE_STANDALONE_WINDOW vkWindow->models = models; #else standaloneWindow->models = models; #endif } void MDLPart::reloadBoneData() { if(skeleton.has_value()) { // first-time data, TODO split out boneData.resize(skeleton->num_bones); calculateBoneInversePose(*skeleton, *skeleton->root_bone, nullptr); for(auto& bone : boneData) { bone.inversePose = glm::inverse(bone.inversePose); } // update data calculateBone(*skeleton, *skeleton->root_bone, nullptr); for(auto& model : models) { // we want to map the actual affected bones to bone ids std::map boneMapping; for (int i = 0; i < model.model.num_affected_bones; i++) { for (int k = 0; k < skeleton->num_bones; k++) { if (strcmp(skeleton->bones[k].name, model.model.affected_bone_names[i]) == 0) boneMapping[i] = k; } } for (int i = 0; i < model.model.num_affected_bones; i++) { model.boneData[i] = boneData[boneMapping[i]].finalTransform; } } } } RenderMaterial MDLPart::createMaterial(const physis_Material &material) { RenderMaterial newMaterial; for (int i = 0; i < material.num_textures; i++) { std::string t = material.textures[i]; if (t.find("skin") != std::string::npos) { newMaterial.type = MaterialType::Skin; } char type = t[t.length() - 5]; switch(type) { case 'm': { auto texture = physis_texture_parse(physis_gamedata_extract_file(data, material.textures[i])); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.multiTexture = new RenderTexture(tex); } case 'd': { auto texture = physis_texture_parse(physis_gamedata_extract_file(data, material.textures[i])); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.diffuseTexture = new RenderTexture(tex); } break; case 'n': { auto texture = physis_texture_parse(physis_gamedata_extract_file(data, material.textures[i])); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.normalTexture = new RenderTexture(tex); } break; case 's': { auto texture = physis_texture_parse(physis_gamedata_extract_file(data, material.textures[i])); auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size); newMaterial.specularTexture = new RenderTexture(tex); } break; default: qDebug() << "unhandled type" << type; break; } } return newMaterial; } void MDLPart::calculateBoneInversePose(physis_Skeleton& skeleton, physis_Bone& bone, physis_Bone* parent_bone) { const glm::mat4 parentMatrix = parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].inversePose; glm::mat4 local(1.0f); local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2])); local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2])); local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2])); boneData[bone.index].inversePose = parentMatrix * local; for(int i = 0; i < skeleton.num_bones; i++) { if(skeleton.bones[i].parent_bone != nullptr && strcmp(skeleton.bones[i].parent_bone->name, bone.name) == 0) { calculateBoneInversePose(skeleton, skeleton.bones[i], &bone); } } } void MDLPart::calculateBone(physis_Skeleton& skeleton, physis_Bone& bone, const physis_Bone* parent_bone) { const glm::mat4 parent_matrix = parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].localTransform; glm::mat4 local = glm::mat4(1.0f); local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2])); local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2])); local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2])); boneData[bone.index].localTransform = parent_matrix * local; boneData[bone.index].finalTransform = boneData[bone.index].localTransform * boneData[bone.index].inversePose; for(int i = 0; i < skeleton.num_bones; i++) { if(skeleton.bones[i].parent_bone != nullptr && strcmp(skeleton.bones[i].parent_bone->name, bone.name) == 0) { calculateBone(skeleton, skeleton.bones[i], &bone); } } } #include "moc_mdlpart.cpp"