// SPDX-FileCopyrightText: 2023 Joshua Goins // SPDX-License-Identifier: GPL-3.0-or-later #include "mdlexport.h" #include #include #include "tiny_gltf.h" void exportModel(const QString &name, const physis_MDL &model, const physis_Skeleton &skeleton, const std::vector &boneData, const QString &fileName) { const int selectedLod = 0; const physis_LOD &lod = model.lods[selectedLod]; tinygltf::Model gltfModel; gltfModel.asset.generator = "Novus"; // TODO: just write the code better! dummy!! size_t required_nodes = 1; required_nodes += model.num_affected_bones; for (int i = 0; i < lod.num_parts; i++) { required_nodes += lod.parts[i].num_submeshes; } gltfModel.nodes.reserve(required_nodes); auto &gltfSkeletonNode = gltfModel.nodes.emplace_back(); gltfSkeletonNode.name = skeleton.root_bone->name; // find needed root bones std::vector root_bones; // hardcode to n_hara for now root_bones.push_back(skeleton.bones[1]); for (uint32_t i = 0; i < root_bones.size(); i++) { auto &node = gltfModel.nodes.emplace_back(); node.name = root_bones[i].name; auto &real_bone = root_bones[i]; node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]}; node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]}; node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]}; } gltfSkeletonNode.children.push_back(1); for (uint32_t i = 0; i < model.num_affected_bones; i++) { auto &node = gltfModel.nodes.emplace_back(); node.name = model.affected_bone_names[i]; int real_bone_id = 0; for (uint32_t k = 0; k < skeleton.num_bones; k++) { if (strcmp(skeleton.bones[k].name, model.affected_bone_names[i]) == 0) { real_bone_id = k; } } auto &real_bone = skeleton.bones[real_bone_id]; node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]}; node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]}; node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]}; } // setup parenting for (uint32_t i = 0; i < model.num_affected_bones; i++) { int real_bone_id = 0; for (uint32_t k = 0; k < skeleton.num_bones; k++) { if (strcmp(skeleton.bones[k].name, model.affected_bone_names[i]) == 0) { real_bone_id = k; } } auto &real_bone = skeleton.bones[real_bone_id]; if (real_bone.parent_bone != nullptr) { bool found = false; for (uint32_t k = 0; k < model.num_affected_bones; k++) { if (strcmp(model.affected_bone_names[k], real_bone.parent_bone->name) == 0) { gltfModel.nodes[k + 2].children.push_back(i + 2); // +1 for the skeleton node taking up the first index found = true; } } // Find the next closest bone that isn't a direct descendant // of n_root, but won't have a parent anyway if (!found) { gltfModel.nodes[1].children.push_back(i + 2); } } else { gltfModel.nodes[1].children.push_back(i + 2); } } auto &gltfSkin = gltfModel.skins.emplace_back(); gltfSkin.name = gltfSkeletonNode.name; gltfSkin.skeleton = 0; for (size_t i = 1; i < gltfModel.nodes.size(); i++) { gltfSkin.joints.push_back(i); } // Inverse bind matrices { gltfSkin.inverseBindMatrices = gltfModel.accessors.size(); auto &inverseAccessor = gltfModel.accessors.emplace_back(); inverseAccessor.bufferView = gltfModel.bufferViews.size(); inverseAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; inverseAccessor.count = gltfModel.nodes.size() - 1; inverseAccessor.type = TINYGLTF_TYPE_MAT4; auto &inverseBufferView = gltfModel.bufferViews.emplace_back(); inverseBufferView.buffer = gltfModel.buffers.size(); auto &inverseBuffer = gltfModel.buffers.emplace_back(); for (uint32_t i = 1; i < gltfModel.nodes.size(); i++) { int real_bone_id = 0; for (uint32_t k = 0; k < skeleton.num_bones; k++) { if (strcmp(skeleton.bones[k].name, gltfModel.nodes[i].name.c_str()) == 0) { real_bone_id = k; } } auto &real_bone = skeleton.bones[real_bone_id]; auto inverseMatrix = boneData[real_bone.index].inversePose; auto inverseMatrixCPtr = reinterpret_cast(glm::value_ptr(inverseMatrix)); inverseBuffer.data.insert(inverseBuffer.data.end(), inverseMatrixCPtr, inverseMatrixCPtr + sizeof(float) * 16); } inverseBufferView.byteLength = inverseBuffer.data.size(); } int mesh_offset = 0; for (uint32_t i = 0; i < lod.num_parts; i++) { auto &part = lod.parts[i]; // Parts above 0 also have an index offset because it's supposed to be all in one buffer. // We should do that too eventually! int initial_index_offset = 0; for (uint32_t j = 0; j < part.num_submeshes; j++) { gltfSkeletonNode.children.push_back(gltfModel.nodes.size()); auto &gltfNode = gltfModel.nodes.emplace_back(); gltfNode.name = name.toStdString() + " Part " + std::to_string(i) + "." + std::to_string(j); gltfNode.skin = 0; gltfNode.mesh = gltfModel.meshes.size(); auto &gltfMesh = gltfModel.meshes.emplace_back(); gltfMesh.name = gltfNode.name + " Mesh Attribute"; auto &gltfPrimitive = gltfMesh.primitives.emplace_back(); if (j == 0) { initial_index_offset = lod.parts[i].submeshes[j].index_offset; } gltfPrimitive.indices = gltfModel.accessors.size(); auto &indexAccessor = gltfModel.accessors.emplace_back(); indexAccessor.name = gltfNode.name + " Index Accessor"; indexAccessor.bufferView = gltfModel.bufferViews.size() + 1; indexAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT; indexAccessor.count = lod.parts[i].submeshes[j].index_count; indexAccessor.byteOffset = (lod.parts[i].submeshes[j].index_offset - initial_index_offset) * sizeof(uint16_t); indexAccessor.type = TINYGLTF_TYPE_SCALAR; gltfPrimitive.mode = TINYGLTF_MODE_TRIANGLES; } for (uint32_t j = 0; j < part.num_submeshes; j++) { auto &gltfPrimitive = gltfModel.meshes[mesh_offset + j].primitives[0]; gltfPrimitive.attributes["POSITION"] = gltfModel.accessors.size(); gltfPrimitive.attributes["TEXCOORD_0"] = gltfModel.accessors.size() + 1; gltfPrimitive.attributes["TEXCOORD_1"] = gltfModel.accessors.size() + 2; gltfPrimitive.attributes["NORMAL"] = gltfModel.accessors.size() + 3; gltfPrimitive.attributes["TANGENT"] = gltfModel.accessors.size() + 4; gltfPrimitive.attributes["COLOR_0"] = gltfModel.accessors.size() + 5; gltfPrimitive.attributes["WEIGHTS_0"] = gltfModel.accessors.size() + 6; gltfPrimitive.attributes["JOINTS_0"] = gltfModel.accessors.size() + 7; } mesh_offset += part.num_submeshes; // Vertices { auto &positionAccessor = gltfModel.accessors.emplace_back(); positionAccessor.bufferView = gltfModel.bufferViews.size(); positionAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; positionAccessor.count = lod.parts[i].num_vertices; positionAccessor.type = TINYGLTF_TYPE_VEC3; auto &uv0Accessor = gltfModel.accessors.emplace_back(); uv0Accessor.bufferView = gltfModel.bufferViews.size(); uv0Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; uv0Accessor.count = lod.parts[i].num_vertices; uv0Accessor.type = TINYGLTF_TYPE_VEC2; uv0Accessor.byteOffset = offsetof(Vertex, uv0); auto &uv1Accessor = gltfModel.accessors.emplace_back(); uv1Accessor.bufferView = gltfModel.bufferViews.size(); uv1Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; uv1Accessor.count = lod.parts[i].num_vertices; uv1Accessor.type = TINYGLTF_TYPE_VEC2; uv1Accessor.byteOffset = offsetof(Vertex, uv1); auto &normalAccessor = gltfModel.accessors.emplace_back(); normalAccessor.bufferView = gltfModel.bufferViews.size(); normalAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; normalAccessor.count = lod.parts[i].num_vertices; normalAccessor.type = TINYGLTF_TYPE_VEC3; normalAccessor.byteOffset = offsetof(Vertex, normal); // We're reusing this spot for tangents (see later post-processing step) auto &tangentAccessor = gltfModel.accessors.emplace_back(); tangentAccessor.bufferView = gltfModel.bufferViews.size(); tangentAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; tangentAccessor.count = lod.parts[i].num_vertices; tangentAccessor.type = TINYGLTF_TYPE_VEC4; tangentAccessor.byteOffset = offsetof(Vertex, bitangent); auto &colorAccessor = gltfModel.accessors.emplace_back(); colorAccessor.bufferView = gltfModel.bufferViews.size(); colorAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; colorAccessor.count = lod.parts[i].num_vertices; colorAccessor.type = TINYGLTF_TYPE_VEC4; colorAccessor.byteOffset = offsetof(Vertex, color); auto &boneWeightAccessor = gltfModel.accessors.emplace_back(); boneWeightAccessor.bufferView = gltfModel.bufferViews.size(); boneWeightAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT; boneWeightAccessor.count = lod.parts[i].num_vertices; boneWeightAccessor.type = TINYGLTF_TYPE_VEC4; boneWeightAccessor.byteOffset = offsetof(Vertex, bone_weight); auto &boneIdAccessor = gltfModel.accessors.emplace_back(); boneIdAccessor.bufferView = gltfModel.bufferViews.size(); boneIdAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE; boneIdAccessor.count = lod.parts[i].num_vertices; boneIdAccessor.type = TINYGLTF_TYPE_VEC4; boneIdAccessor.byteOffset = offsetof(Vertex, bone_id); auto &vertexBufferView = gltfModel.bufferViews.emplace_back(); vertexBufferView.name = "Part " + std::to_string(i) + " Vertex Buffer View"; vertexBufferView.buffer = gltfModel.buffers.size(); vertexBufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER; std::vector newVertices; for (int a = 0; a < lod.parts[i].num_vertices; a++) { Vertex vertex = lod.parts[i].vertices[a]; // Account for additional root bone vertex.bone_id[0]++; vertex.bone_id[1]++; vertex.bone_id[2]++; vertex.bone_id[3]++; // Do the reverse of what we do in importing, because we need to get the tangent from the binormal. const glm::vec3 normal = glm::vec3(vertex.normal[0], vertex.normal[1], vertex.normal[2]); const glm::vec4 tangent = glm::vec4(vertex.bitangent[0], vertex.bitangent[1], vertex.bitangent[2], vertex.bitangent[3]); const glm::vec3 bitangent = glm::cross(glm::vec3(tangent), normal) * tangent.w; const float handedness = glm::dot(glm::cross(bitangent, glm::vec3(tangent)), normal) > 0 ? 1 : -1; vertex.bitangent[0] = bitangent.x; vertex.bitangent[1] = bitangent.y; vertex.bitangent[2] = bitangent.z; vertex.bitangent[3] = handedness; newVertices.push_back(vertex); } auto &vertexBuffer = gltfModel.buffers.emplace_back(); vertexBuffer.name = "Part " + std::to_string(i) + " Vertex Buffer"; vertexBuffer.data.resize(lod.parts[i].num_vertices * sizeof(Vertex)); memcpy(vertexBuffer.data.data(), newVertices.data(), vertexBuffer.data.size()); vertexBufferView.byteLength = vertexBuffer.data.size(); vertexBufferView.byteStride = sizeof(Vertex); } // Indices { auto &indexBufferView = gltfModel.bufferViews.emplace_back(); indexBufferView.name = "Part " + std::to_string(i) + " Index Buffer View"; indexBufferView.buffer = gltfModel.buffers.size(); indexBufferView.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER; auto &indexBuffer = gltfModel.buffers.emplace_back(); indexBuffer.name = "Part " + std::to_string(i) + " Index Buffer"; indexBuffer.data.resize(lod.parts[i].num_indices * sizeof(uint16_t)); memcpy(indexBuffer.data.data(), lod.parts[i].indices, indexBuffer.data.size()); indexBufferView.byteLength = indexBuffer.data.size(); } } auto &scene = gltfModel.scenes.emplace_back(); scene.name = name.toStdString(); scene.nodes = {0}; tinygltf::TinyGLTF loader; loader.WriteGltfSceneToFile(&gltfModel, fileName.toStdString(), true, true, false, true); }