1
Fork 0
mirror of https://github.com/redstrate/Novus.git synced 2025-04-25 13:17:46 +00:00
novus/parts/mdl/mdlpart.cpp
2023-09-26 00:37:55 -04:00

570 lines
No EOL
21 KiB
C++

// SPDX-FileCopyrightText: 2023 Joshua Goins <josh@redstrate.com>
// SPDX-License-Identifier: GPL-3.0-or-later
#include "mdlpart.h"
#include "glm/gtx/transform.hpp"
#include <QJsonArray>
#include <QJsonDocument>
#include <QJsonObject>
#include <QResizeEvent>
#include <QVBoxLayout>
#include <QVulkanInstance>
#include <QVulkanWindow>
#include <QWindow>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtc/type_ptr.inl>
#include "filecache.h"
#include "tiny_gltf.h"
#ifndef USE_STANDALONE_WINDOW
class VulkanWindow : public QWindow {
public:
VulkanWindow(MDLPart* part, Renderer* renderer, QVulkanInstance* instance)
: part(part), m_renderer(renderer), m_instance(instance) {
setSurfaceType(VulkanSurface);
setVulkanInstance(instance);
}
void exposeEvent(QExposeEvent*) {
if (isExposed()) {
if (!m_initialized) {
m_initialized = true;
auto surface = m_instance->surfaceForWindow(this);
if (!m_renderer->initSwapchain(surface, width(), height()))
m_initialized = false;
else
render();
}
}
}
bool event(QEvent* e) {
switch (e->type()) {
case QEvent::UpdateRequest:
render();
break;
case QEvent::Resize: {
QResizeEvent* resizeEvent = (QResizeEvent*)e;
auto surface = m_instance->surfaceForWindow(this);
m_renderer->resize(surface, resizeEvent->size().width(), resizeEvent->size().height());
} break;
case QEvent::MouseButtonPress: {
auto mouseEvent = dynamic_cast<QMouseEvent*>(e);
if (mouseEvent->button() == Qt::MouseButton::LeftButton) {
part->lastX = mouseEvent->x();
part->lastY = mouseEvent->y();
part->cameraMode = MDLPart::CameraMode::Orbit;
setKeyboardGrabEnabled(true);
setMouseGrabEnabled(true);
} else if (mouseEvent->button() == Qt::MouseButton::RightButton) {
part->lastX = mouseEvent->x();
part->lastY = mouseEvent->y();
part->cameraMode = MDLPart::CameraMode::Move;
setKeyboardGrabEnabled(true);
setMouseGrabEnabled(true);
}
} break;
case QEvent::MouseButtonRelease: {
part->cameraMode = MDLPart::CameraMode::None;
setKeyboardGrabEnabled(false);
setMouseGrabEnabled(false);
} break;
case QEvent::MouseMove: {
auto mouseEvent = dynamic_cast<QMouseEvent*>(e);
if (part->cameraMode != MDLPart::CameraMode::None) {
const int deltaX = mouseEvent->x() - part->lastX;
const int deltaY = mouseEvent->y() - part->lastY;
if (part->cameraMode == MDLPart::CameraMode::Orbit) {
part->yaw += deltaX * 0.01f; // TODO: remove these magic numbers
part->pitch += deltaY * 0.01f;
} else {
glm::vec3 position(
part->cameraDistance * sin(part->yaw),
part->cameraDistance * part->pitch,
part->cameraDistance * cos(part->yaw));
glm::quat rot = glm::quatLookAt((part->position + position) - part->position, {0, 1, 0});
glm::vec3 up, right;
up = rot * glm::vec3{0, 1, 0};
right = rot * glm::vec3{1, 0, 0};
part->position += up * (float)deltaY * 0.01f;
part->position += right * (float)deltaX * 0.01f;
}
part->lastX = mouseEvent->x();
part->lastY = mouseEvent->y();
}
} break;
case QEvent::Wheel: {
auto scrollEvent = dynamic_cast<QWheelEvent*>(e);
part->cameraDistance -= scrollEvent->angleDelta().y() / 120.0f; // FIXME: why 120?
} break;
}
return QWindow::event(e);
}
void render() {
if (part->requestUpdate)
part->requestUpdate();
glm::vec3 position(
part->cameraDistance * sin(part->yaw),
part->cameraDistance * part->pitch,
part->cameraDistance * cos(part->yaw));
m_renderer->view = glm::lookAt(part->position + position, part->position, glm::vec3(0, -1, 0));
m_renderer->render(models);
m_instance->presentQueued(this);
requestUpdate();
}
std::vector<RenderModel> models;
private:
bool m_initialized = false;
Renderer* m_renderer;
QVulkanInstance* m_instance;
MDLPart* part;
};
#else
#include "equipment.h"
#include "standalonewindow.h"
#endif
MDLPart::MDLPart(GameData* data, FileCache& cache) : data(data), cache(cache) {
auto viewportLayout = new QVBoxLayout();
viewportLayout->setContentsMargins(0, 0, 0, 0);
setLayout(viewportLayout);
renderer = new Renderer();
#ifndef USE_STANDALONE_WINDOW
auto inst = new QVulkanInstance();
inst->setVkInstance(renderer->instance);
inst->setFlags(QVulkanInstance::Flag::NoDebugOutputRedirect);
inst->create();
vkWindow = new VulkanWindow(this, renderer, inst);
vkWindow->setVulkanInstance(inst);
auto widget = QWidget::createWindowContainer(vkWindow);
viewportLayout->addWidget(widget);
#else
standaloneWindow = new StandaloneWindow(renderer);
renderer->initSwapchain(standaloneWindow->getSurface(renderer->instance), 640, 480);
QTimer* timer = new QTimer();
connect(timer, &QTimer::timeout, this, [this] {
standaloneWindow->render();
});
timer->start(1000);
#endif
connect(this, &MDLPart::modelChanged, this, &MDLPart::reloadRenderer);
connect(this, &MDLPart::skeletonChanged, this, &MDLPart::reloadBoneData);
}
void MDLPart::exportModel(const QString& fileName) {
const int selectedModel = 0;
const int selectedLod = 0;
const physis_MDL& model = models[selectedModel].model;
const physis_LOD& lod = model.lods[selectedLod];
tinygltf::Model gltfModel;
gltfModel.asset.generator = "Novus";
auto& gltfSkeletonNode = gltfModel.nodes.emplace_back();
gltfSkeletonNode.name = skeleton->root_bone->name;
for (int i = 0; i < model.num_affected_bones; i++) {
auto& node = gltfModel.nodes.emplace_back();
node.name = model.affected_bone_names[i];
int real_bone_id = 0;
for (int k = 0; k < skeleton->num_bones; k++) {
if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
auto& real_bone = skeleton->bones[real_bone_id];
node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]};
node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]};
node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]};
}
// setup parenting
for (int i = 0; i < model.num_affected_bones; i++) {
int real_bone_id = 0;
for (int k = 0; k < skeleton->num_bones; k++) {
if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
auto& real_bone = skeleton->bones[real_bone_id];
if (real_bone.parent_bone != nullptr) {
for (int k = 0; k < model.num_affected_bones; k++) {
if (strcmp(model.affected_bone_names[k], real_bone.parent_bone->name) == 0) {
gltfModel.nodes[k + 1].children.push_back(i + 1); // +1 for the skeleton node taking up the first index
}
}
} else {
gltfSkeletonNode.children.push_back(i + 1);
}
}
auto& gltfSkin = gltfModel.skins.emplace_back();
gltfSkin.name = gltfSkeletonNode.name;
for (int i = 1; i < gltfModel.nodes.size(); i++) {
gltfSkin.joints.push_back(i);
}
// Inverse bind matrices
{
gltfSkin.inverseBindMatrices = gltfModel.accessors.size();
auto& inverseAccessor = gltfModel.accessors.emplace_back();
inverseAccessor.bufferView = gltfModel.bufferViews.size();
inverseAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
inverseAccessor.count = model.num_affected_bones;
inverseAccessor.type = TINYGLTF_TYPE_MAT4;
auto& inverseBufferView = gltfModel.bufferViews.emplace_back();
inverseBufferView.buffer = gltfModel.buffers.size();
auto& inverseBuffer = gltfModel.buffers.emplace_back();
for (int i = 0; i < model.num_affected_bones; i++) {
int real_bone_id = 0;
for (int k = 0; k < skeleton->num_bones; k++) {
if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
auto& real_bone = skeleton->bones[real_bone_id];
auto inverseMatrix = boneData[real_bone.index].inversePose;
auto inverseMatrixCPtr = reinterpret_cast<uint8_t*>(glm::value_ptr(inverseMatrix));
inverseBuffer.data.insert(inverseBuffer.data.end(), inverseMatrixCPtr, inverseMatrixCPtr + sizeof(float) * 16);
}
inverseBufferView.byteLength = inverseBuffer.data.size();
}
for (int i = 0; i < lod.num_parts; i++) {
auto& gltfNode = gltfModel.nodes.emplace_back();;
gltfNode.name = "placeholder Part 0.1";
gltfNode.skin = 0;
gltfNode.mesh = gltfModel.meshes.size();
auto& gltfMesh = gltfModel.meshes.emplace_back();
gltfMesh.name = "what?";
auto& gltfPrimitive = gltfMesh.primitives.emplace_back();
gltfPrimitive.attributes["POSITION"] = gltfModel.accessors.size();
gltfPrimitive.attributes["TEXCOORD_0"] = gltfModel.accessors.size() + 1;
gltfPrimitive.attributes["NORMAL"] = gltfModel.accessors.size() + 2;
gltfPrimitive.attributes["WEIGHTS_0"] = gltfModel.accessors.size() + 3;
gltfPrimitive.attributes["JOINTS_0"] = gltfModel.accessors.size() + 4;
gltfPrimitive.mode = TINYGLTF_MODE_TRIANGLES;
// Vertices
{
auto& positionAccessor = gltfModel.accessors.emplace_back();
positionAccessor.bufferView = gltfModel.bufferViews.size();
positionAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
positionAccessor.count = lod.parts[i].num_vertices;
positionAccessor.type = TINYGLTF_TYPE_VEC3;
auto& uvAccessor = gltfModel.accessors.emplace_back();
uvAccessor.bufferView = gltfModel.bufferViews.size();
uvAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
uvAccessor.count = lod.parts[i].num_vertices;
uvAccessor.type = TINYGLTF_TYPE_VEC2;
uvAccessor.byteOffset = offsetof(Vertex, uv);
auto& normalAccessor = gltfModel.accessors.emplace_back();
normalAccessor.bufferView = gltfModel.bufferViews.size();
normalAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
normalAccessor.count = lod.parts[i].num_vertices;
normalAccessor.type = TINYGLTF_TYPE_VEC3;
normalAccessor.byteOffset = offsetof(Vertex, normal);
auto& boneWeightAccessor = gltfModel.accessors.emplace_back();
boneWeightAccessor.bufferView = gltfModel.bufferViews.size();
boneWeightAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
boneWeightAccessor.count = lod.parts[i].num_vertices;
boneWeightAccessor.type = TINYGLTF_TYPE_VEC4;
boneWeightAccessor.byteOffset = offsetof(Vertex, bone_weight);
auto& boneIdAccessor = gltfModel.accessors.emplace_back();
boneIdAccessor.bufferView = gltfModel.bufferViews.size();
boneIdAccessor.componentType = TINYGLTF_COMPONENT_TYPE_BYTE;
boneIdAccessor.count = lod.parts[i].num_vertices;
boneIdAccessor.type = TINYGLTF_TYPE_VEC4;
boneIdAccessor.byteOffset = offsetof(Vertex, bone_id);
auto& vertexBufferView = gltfModel.bufferViews.emplace_back();
vertexBufferView.buffer = gltfModel.buffers.size();
vertexBufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
auto& vertexBuffer = gltfModel.buffers.emplace_back();
vertexBuffer.data.resize(lod.parts[i].num_vertices * sizeof(Vertex));
memcpy(vertexBuffer.data.data(), lod.parts[i].vertices, vertexBuffer.data.size());
vertexBufferView.byteLength = vertexBuffer.data.size();
vertexBufferView.byteStride = sizeof(Vertex);
}
// Indices
{
gltfPrimitive.indices = gltfModel.accessors.size();
auto& indexAccessor = gltfModel.accessors.emplace_back();
indexAccessor.bufferView = gltfModel.bufferViews.size();
indexAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT;
indexAccessor.count = lod.parts[i].num_indices;
indexAccessor.type = TINYGLTF_TYPE_SCALAR;
auto& indexBufferView = gltfModel.bufferViews.emplace_back();
indexBufferView.buffer = gltfModel.buffers.size();
indexBufferView.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER;
auto& indexBuffer = gltfModel.buffers.emplace_back();
indexBuffer.data.resize(lod.parts[i].num_indices * sizeof(uint16_t));
memcpy(indexBuffer.data.data(), lod.parts[i].indices, indexBuffer.data.size());
indexBufferView.byteLength = indexBuffer.data.size();
indexBufferView.byteStride = sizeof(uint16_t);
}
}
tinygltf::TinyGLTF loader;
loader.WriteGltfSceneToFile(&gltfModel, fileName.toStdString(), true, true, false, true);
}
void MDLPart::clear() {
models.clear();
Q_EMIT modelChanged();
}
void MDLPart::addModel(physis_MDL mdl, std::vector<physis_Material> materials, int lod) {
qDebug() << "Adding model to MDLPart";
auto model = renderer->addModel(mdl, lod);
std::transform(
materials.begin(), materials.end(), std::back_inserter(model.materials), [this](const physis_Material& mat) {
return createMaterial(mat);
});
if (materials.empty()) {
model.materials.push_back(createMaterial(physis_Material{}));
}
models.push_back(model);
Q_EMIT modelChanged();
}
void MDLPart::setSkeleton(physis_Skeleton newSkeleton) {
skeleton = std::make_unique<physis_Skeleton>(newSkeleton);
firstTimeSkeletonDataCalculated = false;
Q_EMIT skeletonChanged();
}
void MDLPart::loadRaceDeformMatrices(physis_Buffer buffer) {
QJsonDocument document = QJsonDocument::fromJson(QByteArray((const char*)buffer.data, buffer.size));
for (auto boneObj : document.object()[QLatin1String("Data")].toArray()) {
QJsonArray matrix = boneObj.toObject()[QLatin1String("Matrix")].toArray();
QString boneName = boneObj.toObject()[QLatin1String("Name")].toString();
glm::mat4 actualMatrix;
int i = 0;
for (auto val : matrix) {
glm::value_ptr(actualMatrix)[i++] = val.toDouble();
}
for (int i = 0; i < skeleton->num_bones; i++) {
if (std::string_view{skeleton->bones[i].name} == boneName.toStdString()) {
auto& data = boneData[i];
data.deformRaceMatrix = actualMatrix;
}
}
firstTimeSkeletonDataCalculated = false;
}
}
void MDLPart::clearSkeleton() {
skeleton.reset();
firstTimeSkeletonDataCalculated = false;
Q_EMIT skeletonChanged();
}
void MDLPart::reloadRenderer() {
reloadBoneData();
#ifndef USE_STANDALONE_WINDOW
vkWindow->models = models;
#else
standaloneWindow->models = models;
#endif
}
void MDLPart::reloadBoneData() {
if (skeleton) {
if (!firstTimeSkeletonDataCalculated) {
if (boneData.empty()) {
boneData.resize(skeleton->num_bones);
}
calculateBoneInversePose(*skeleton, *skeleton->root_bone, nullptr);
for (auto& bone : boneData) {
bone.inversePose = glm::inverse(bone.inversePose);
}
firstTimeSkeletonDataCalculated = true;
}
// update data
calculateBone(*skeleton, *skeleton->root_bone, nullptr);
for (auto& model : models) {
// we want to map the actual affected bones to bone ids
std::map<int, int> boneMapping;
for (int i = 0; i < model.model.num_affected_bones; i++) {
for (int k = 0; k < skeleton->num_bones; k++) {
if (std::string_view{skeleton->bones[k].name} ==
std::string_view{model.model.affected_bone_names[i]}) {
boneMapping[i] = k;
}
}
}
for (int i = 0; i < model.model.num_affected_bones; i++) {
model.boneData[i] = boneData[boneMapping[i]].finalTransform;
}
}
}
}
RenderMaterial MDLPart::createMaterial(const physis_Material& material) {
RenderMaterial newMaterial;
for (int i = 0; i < material.num_textures; i++) {
std::string t = material.textures[i];
if (t.find("skin") != std::string::npos) {
newMaterial.type = MaterialType::Skin;
}
char type = t[t.length() - 5];
switch (type) {
case 'm': {
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
newMaterial.multiTexture = new RenderTexture(tex);
}
case 'd': {
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
newMaterial.diffuseTexture = new RenderTexture(tex);
} break;
case 'n': {
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
newMaterial.normalTexture = new RenderTexture(tex);
} break;
case 's': {
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
newMaterial.specularTexture = new RenderTexture(tex);
} break;
default:
qDebug() << "unhandled type" << type;
break;
}
}
return newMaterial;
}
void MDLPart::calculateBoneInversePose(physis_Skeleton& skeleton, physis_Bone& bone, physis_Bone* parent_bone) {
const glm::mat4 parentMatrix = parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].inversePose;
glm::mat4 local = glm::mat4(1.0f);
local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2]));
local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2]));
local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2]));
boneData[bone.index].inversePose = parentMatrix * local;
for (int i = 0; i < skeleton.num_bones; i++) {
if (skeleton.bones[i].parent_bone != nullptr &&
std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) {
calculateBoneInversePose(skeleton, skeleton.bones[i], &bone);
}
}
}
void MDLPart::calculateBone(physis_Skeleton& skeleton, physis_Bone& bone, const physis_Bone* parent_bone) {
const glm::mat4 parent_matrix =
parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].localTransform;
glm::mat4 local = glm::mat4(1.0f);
local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2]));
local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2]));
local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2]));
boneData[bone.index].localTransform = parent_matrix * local;
boneData[bone.index].finalTransform =
boneData[bone.index].localTransform * boneData[bone.index].deformRaceMatrix * boneData[bone.index].inversePose;
for (int i = 0; i < skeleton.num_bones; i++) {
if (skeleton.bones[i].parent_bone != nullptr &&
std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) {
calculateBone(skeleton, skeleton.bones[i], &bone);
}
}
}
void MDLPart::removeModel(const physis_MDL &mdl)
{
models.erase(std::remove_if(models.begin(),
models.end(),
[mdl](const RenderModel other) {
return mdl.lods == other.model.lods;
}),
models.end());
}
#include "moc_mdlpart.cpp"