1
Fork 0
mirror of https://github.com/redstrate/Novus.git synced 2025-04-28 22:47:45 +00:00
novus/parts/mdl/mdlpart.cpp

403 lines
No EOL
14 KiB
C++

// SPDX-FileCopyrightText: 2023 Joshua Goins <josh@redstrate.com>
// SPDX-License-Identifier: GPL-3.0-or-later
#include "mdlpart.h"
#include "glm/gtx/transform.hpp"
#include <QJsonArray>
#include <QJsonDocument>
#include <QJsonObject>
#include <QResizeEvent>
#include <QVBoxLayout>
#include <QVulkanInstance>
#include <QVulkanWindow>
#include <cmath>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/matrix_major_storage.hpp>
#include "filecache.h"
#include "vulkanwindow.h"
MDLPart::MDLPart(GameData *data, FileCache &cache, QWidget *parent)
: QWidget(parent)
, data(data)
, cache(cache)
{
auto viewportLayout = new QVBoxLayout();
viewportLayout->setContentsMargins(0, 0, 0, 0);
setLayout(viewportLayout);
pbd = physis_parse_pbd(physis_gamedata_extract_file(data, "chara/xls/bonedeformer/human.pbd"));
renderer = new RenderManager(data);
auto inst = new QVulkanInstance();
inst->setVkInstance(renderer->device().instance);
inst->setFlags(QVulkanInstance::Flag::NoDebugOutputRedirect);
inst->create();
vkWindow = new VulkanWindow(this, renderer, inst);
vkWindow->setVulkanInstance(inst);
auto widget = QWidget::createWindowContainer(vkWindow);
widget->installEventFilter(vkWindow);
viewportLayout->addWidget(widget);
connect(this, &MDLPart::modelChanged, this, &MDLPart::reloadRenderer);
connect(this, &MDLPart::skeletonChanged, this, &MDLPart::reloadBoneData);
}
void MDLPart::exportModel(const QString &fileName)
{
auto &model = models[0];
::exportModel(model.name, model.model, *skeleton, boneData, fileName);
}
DrawObject &MDLPart::getModel(const int index)
{
return models[index];
}
void MDLPart::reloadModel(const int index)
{
renderer->reloadDrawObject(models[index], 0);
Q_EMIT modelChanged();
}
void MDLPart::clear()
{
models.clear();
Q_EMIT modelChanged();
}
void MDLPart::addModel(physis_MDL mdl,
bool skinned,
glm::vec3 position,
const QString &name,
std::vector<physis_Material> materials,
int lod,
uint16_t fromBodyId,
uint16_t toBodyId)
{
qDebug() << "Adding model to MDLPart";
auto model = renderer->addDrawObject(mdl, lod);
model.name = name;
model.from_body_id = fromBodyId;
model.to_body_id = toBodyId;
model.position = position;
model.skinned = skinned;
std::transform(materials.begin(), materials.end(), std::back_inserter(model.materials), [this](const physis_Material &mat) {
return createMaterial(mat);
});
if (materials.empty()) {
model.materials.push_back(createMaterial(physis_Material{}));
}
models.push_back(model);
Q_EMIT modelChanged();
}
void MDLPart::setSkeleton(physis_Skeleton newSkeleton)
{
skeleton = std::make_unique<physis_Skeleton>(newSkeleton);
firstTimeSkeletonDataCalculated = false;
Q_EMIT skeletonChanged();
}
void MDLPart::clearSkeleton()
{
skeleton.reset();
firstTimeSkeletonDataCalculated = false;
Q_EMIT skeletonChanged();
}
void MDLPart::reloadRenderer()
{
reloadBoneData();
vkWindow->models = models;
}
void MDLPart::enableFreemode()
{
vkWindow->freeMode = true;
}
bool MDLPart::event(QEvent *event)
{
switch (event->type()) {
case QEvent::KeyPress:
case QEvent::KeyRelease:
vkWindow->event(event);
break;
default:
break;
}
return QWidget::event(event);
}
void MDLPart::reloadBoneData()
{
if (skeleton) {
if (!firstTimeSkeletonDataCalculated) {
if (boneData.empty()) {
boneData.resize(skeleton->num_bones);
}
calculateBoneInversePose(*skeleton, *skeleton->root_bone, nullptr);
for (auto &bone : boneData) {
bone.inversePose = glm::inverse(bone.inversePose);
}
firstTimeSkeletonDataCalculated = true;
}
// update data
calculateBone(*skeleton, *skeleton->root_bone, nullptr);
for (auto &model : models) {
// we want to map the actual affected bones to bone ids
std::map<int, int> boneMapping;
for (uint32_t i = 0; i < model.model.num_affected_bones; i++) {
for (uint32_t k = 0; k < skeleton->num_bones; k++) {
if (std::string_view{skeleton->bones[k].name} == std::string_view{model.model.affected_bone_names[i]}) {
boneMapping[i] = k;
}
}
}
std::vector<glm::mat4> deformBones(model.model.num_affected_bones);
for (uint32_t i = 0; i < model.model.num_affected_bones; i++) {
deformBones[i] = glm::mat4(1.0f);
}
// get deform matrices
if (enableRacialDeform) {
auto deform = physis_pbd_get_deform_matrix(pbd, model.from_body_id, model.to_body_id);
if (deform.num_bones != 0) {
for (int i = 0; i < deform.num_bones; i++) {
auto deformBone = deform.bones[i];
for (uint32_t k = 0; k < model.model.num_affected_bones; k++) {
if (std::string_view{model.model.affected_bone_names[k]} == std::string_view{deformBone.name}) {
deformBones[k] =
glm::rowMajor4(glm::vec4{deformBone.deform[0], deformBone.deform[1], deformBone.deform[2], deformBone.deform[3]},
glm::vec4{deformBone.deform[4], deformBone.deform[5], deformBone.deform[6], deformBone.deform[7]},
glm::vec4{deformBone.deform[8], deformBone.deform[9], deformBone.deform[10], deformBone.deform[11]},
glm::vec4{0.0f, 0.0f, 0.0f, 1.0f});
}
}
}
}
}
for (uint32_t i = 0; i < model.model.num_affected_bones; i++) {
const int originalBoneId = boneMapping[i];
model.boneData[i] = deformBones[i] * boneData[originalBoneId].localTransform * boneData[originalBoneId].inversePose;
}
}
}
}
RenderMaterial MDLPart::createMaterial(const physis_Material &material)
{
RenderMaterial newMaterial;
newMaterial.mat = material;
if (material.shpk_name != nullptr) {
std::string shpkPath = "shader/sm5/shpk/" + std::string(material.shpk_name);
auto shpkData = physis_gamedata_extract_file(data, shpkPath.c_str());
if (shpkData.data != nullptr) {
newMaterial.shaderPackage = physis_parse_shpk(shpkData);
// create the material parameters for this shader package
newMaterial.materialBuffer =
renderer->device().createBuffer(newMaterial.shaderPackage.material_parameters_size, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
renderer->device().nameBuffer(newMaterial.materialBuffer, "g_MaterialParameter"); // TODO: add material name
// assumed to be floats, maybe not always true?
std::vector<float> buffer(newMaterial.shaderPackage.material_parameters_size / sizeof(float));
// copy the material data
for (uint32_t i = 0; i < newMaterial.shaderPackage.num_material_parameters; i++) {
auto param = newMaterial.shaderPackage.material_parameters[i];
for (uint32_t j = 0; j < newMaterial.mat.num_constants; j++) {
auto constant = newMaterial.mat.constants[j];
if (constant.id == param.id) {
for (uint32_t z = 0; z < constant.num_values; z++) {
buffer[(param.byte_offset / sizeof(float)) + z] = constant.values[z];
}
}
}
}
renderer->device().copyToBuffer(newMaterial.materialBuffer, buffer.data(), buffer.size() * sizeof(float));
}
}
for (uint32_t i = 0; i < material.num_textures; i++) {
std::string t = material.textures[i];
if (t.find("skin") != std::string::npos) {
newMaterial.type = MaterialType::Skin;
}
if (material.color_table.num_rows > 0) {
int width = 4;
int height = material.color_table.num_rows;
qInfo() << "Creating color table" << width << "X" << height;
std::vector<float> rgbaData(width * height * 4);
int offset = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
const auto row = material.color_table.rows[y];
glm::vec4 color;
if (x == 0) {
color = glm::vec4{row.diffuse_color[0], row.diffuse_color[1], row.diffuse_color[2], row.specular_strength};
} else if (x == 1) {
color = glm::vec4{row.specular_color[0], row.specular_color[1], row.specular_color[2], row.gloss_strength};
} else if (x == 2) {
color = glm::vec4{row.emissive_color[0], row.emissive_color[1], row.emissive_color[2], row.tile_set};
} else if (x == 3) {
color = glm::vec4{row.material_repeat[0], row.material_repeat[1], row.material_skew[0], row.material_skew[1]};
}
rgbaData[offset] = color.x;
rgbaData[offset + 1] = color.y;
rgbaData[offset + 2] = color.z;
rgbaData[offset + 3] = color.a;
offset += 4;
}
}
physis_Texture textureConfig;
textureConfig.texture_type = TextureType::TwoDimensional;
textureConfig.width = width;
textureConfig.height = height;
textureConfig.depth = 1;
textureConfig.rgba = reinterpret_cast<uint8_t *>(rgbaData.data());
textureConfig.rgba_size = rgbaData.size() * sizeof(float);
// TODO: use 16-bit floating points like the game
newMaterial.tableTexture = renderer->addGameTexture(VK_FORMAT_R32G32B32A32_SFLOAT, textureConfig);
renderer->device().nameTexture(*newMaterial.tableTexture, "g_SamplerTable"); // TODO: add material name
}
qInfo() << "Loading" << t;
char type = t[t.length() - 5];
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
if (texture.rgba != nullptr) {
switch (type) {
case 'm': {
newMaterial.multiTexture = renderer->addGameTexture(VK_FORMAT_R8G8B8A8_UNORM, texture);
renderer->device().nameTexture(*newMaterial.multiTexture, material.textures[i]);
} break;
case 'd': {
newMaterial.diffuseTexture = renderer->addGameTexture(VK_FORMAT_R8G8B8A8_UNORM, texture);
renderer->device().nameTexture(*newMaterial.diffuseTexture, material.textures[i]);
} break;
case 'n': {
newMaterial.normalTexture = renderer->addGameTexture(VK_FORMAT_R8G8B8A8_UNORM, texture);
renderer->device().nameTexture(*newMaterial.normalTexture, material.textures[i]);
} break;
case 's': {
newMaterial.specularTexture = renderer->addGameTexture(VK_FORMAT_R8G8B8A8_UNORM, texture);
renderer->device().nameTexture(*newMaterial.specularTexture, material.textures[i]);
} break;
default:
qDebug() << "unhandled type" << type;
break;
}
} else {
qInfo() << "Failed to load" << t;
}
}
return newMaterial;
}
void MDLPart::calculateBoneInversePose(physis_Skeleton &skeleton, physis_Bone &bone, physis_Bone *parent_bone)
{
const glm::mat4 parentMatrix = parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].inversePose;
glm::mat4 local = glm::mat4(1.0f);
local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2]));
local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2]));
local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2]));
boneData[bone.index].inversePose = parentMatrix * local;
for (uint32_t i = 0; i < skeleton.num_bones; i++) {
if (skeleton.bones[i].parent_bone != nullptr && std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) {
calculateBoneInversePose(skeleton, skeleton.bones[i], &bone);
}
}
}
void MDLPart::calculateBone(physis_Skeleton &skeleton, physis_Bone &bone, const physis_Bone *parent_bone)
{
const glm::mat4 parent_matrix = parent_bone == nullptr ? glm::mat4(1.0f) : (boneData[parent_bone->index].localTransform);
glm::mat4 local = glm::mat4(1.0f);
local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2]));
local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2]));
local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2]));
boneData[bone.index].localTransform = parent_matrix * local;
boneData[bone.index].finalTransform = parent_matrix;
for (uint32_t i = 0; i < skeleton.num_bones; i++) {
if (skeleton.bones[i].parent_bone != nullptr && std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) {
calculateBone(skeleton, skeleton.bones[i], &bone);
}
}
}
void MDLPart::removeModel(const physis_MDL &mdl)
{
models.erase(std::remove_if(models.begin(),
models.end(),
[mdl](const DrawObject &other) {
return mdl.p_ptr == other.model.p_ptr;
}),
models.end());
Q_EMIT modelChanged();
}
void MDLPart::setWireframe(bool wireframe)
{
Q_UNUSED(wireframe)
// renderer->wireframe = wireframe;
}
bool MDLPart::wireframe() const
{
// return renderer->wireframe;
return false;
}
int MDLPart::numModels() const
{
return models.size();
}
#include "moc_mdlpart.cpp"