1
Fork 0
mirror of https://github.com/redstrate/Physis.git synced 2025-04-24 21:37:46 +00:00
physis/src/sha1.rs
Joshua Goins ec04c13fbd Silence more dead code warnings
This is intentional, for various reasons between binrw limitations and
code that isn't used directly in Physis.
2024-06-29 09:33:23 -04:00

688 lines
19 KiB
Rust

// SPDX-FileCopyrightText: Armin Ronacher, Koka El Kiwi
// SPDX-License-Identifier: BSD-3-Clause
// SPDX-FileNotice: Modified sha1-smol crate (https://github.com/mitsuhiko/sha1-smol) revised for vendored use in physis
// TODO: remove some extra bits, since we usually only consume digests once
//! A minimal implementation of SHA1 for rust.
//!
//! This implementation supports no_std.
//!
//! The sha1 object can be updated multiple times.
#![deny(missing_docs)]
#![allow(deprecated)]
#![allow(clippy::double_parens)]
#![allow(clippy::identity_op)]
#![allow(dead_code)]
use core::cmp;
use core::fmt;
use core::hash;
use core::str;
pub use self::fake::*;
pub trait SimdExt {
fn simd_eq(self, rhs: Self) -> Self;
}
impl SimdExt for u32x4 {
fn simd_eq(self, rhs: Self) -> Self {
if self == rhs {
u32x4(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff)
} else {
u32x4(0, 0, 0, 0)
}
}
}
mod fake {
use core::ops::{Add, BitAnd, BitOr, BitXor, Shl, Shr, Sub};
#[derive(Clone, Copy, PartialEq, Eq)]
#[allow(non_camel_case_types)]
pub struct u32x4(pub u32, pub u32, pub u32, pub u32);
impl Add for u32x4 {
type Output = u32x4;
fn add(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0.wrapping_add(rhs.0),
self.1.wrapping_add(rhs.1),
self.2.wrapping_add(rhs.2),
self.3.wrapping_add(rhs.3),
)
}
}
impl Sub for u32x4 {
type Output = u32x4;
fn sub(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0.wrapping_sub(rhs.0),
self.1.wrapping_sub(rhs.1),
self.2.wrapping_sub(rhs.2),
self.3.wrapping_sub(rhs.3),
)
}
}
impl BitAnd for u32x4 {
type Output = u32x4;
fn bitand(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0 & rhs.0,
self.1 & rhs.1,
self.2 & rhs.2,
self.3 & rhs.3,
)
}
}
impl BitOr for u32x4 {
type Output = u32x4;
fn bitor(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0 | rhs.0,
self.1 | rhs.1,
self.2 | rhs.2,
self.3 | rhs.3,
)
}
}
impl BitXor for u32x4 {
type Output = u32x4;
fn bitxor(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0 ^ rhs.0,
self.1 ^ rhs.1,
self.2 ^ rhs.2,
self.3 ^ rhs.3,
)
}
}
impl Shl<usize> for u32x4 {
type Output = u32x4;
fn shl(self, amt: usize) -> u32x4 {
u32x4(self.0 << amt, self.1 << amt, self.2 << amt, self.3 << amt)
}
}
impl Shl<u32x4> for u32x4 {
type Output = u32x4;
fn shl(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0 << rhs.0,
self.1 << rhs.1,
self.2 << rhs.2,
self.3 << rhs.3,
)
}
}
impl Shr<usize> for u32x4 {
type Output = u32x4;
fn shr(self, amt: usize) -> u32x4 {
u32x4(self.0 >> amt, self.1 >> amt, self.2 >> amt, self.3 >> amt)
}
}
impl Shr<u32x4> for u32x4 {
type Output = u32x4;
fn shr(self, rhs: u32x4) -> u32x4 {
u32x4(
self.0 >> rhs.0,
self.1 >> rhs.1,
self.2 >> rhs.2,
self.3 >> rhs.3,
)
}
}
#[derive(Clone, Copy)]
#[allow(non_camel_case_types)]
pub struct u64x2(pub u64, pub u64);
impl Add for u64x2 {
type Output = u64x2;
fn add(self, rhs: u64x2) -> u64x2 {
u64x2(self.0.wrapping_add(rhs.0), self.1.wrapping_add(rhs.1))
}
}
}
/// The length of a SHA1 digest in bytes
pub const DIGEST_LENGTH: usize = 20;
/// Represents a Sha1 hash object in memory.
#[derive(Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct Sha1 {
state: Sha1State,
blocks: Blocks,
len: u64,
}
struct Blocks {
len: u32,
block: [u8; 64],
}
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash, Default)]
struct Sha1State {
state: [u32; 5],
}
/// Digest generated from a `Sha1` instance.
///
/// A digest can be formatted to view the digest as a hex string, or the bytes
/// can be extracted for later processing.
///
/// To retrieve a hex string result call `to_string` on it (requires that std
/// is available).
///
/// If the `serde` feature is enabled a digest can also be serialized and
/// deserialized. Likewise a digest can be parsed from a hex string.
#[derive(PartialOrd, Ord, PartialEq, Eq, Hash, Clone, Copy, Default)]
pub struct Digest {
data: Sha1State,
}
const DEFAULT_STATE: Sha1State = Sha1State {
state: [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0],
};
#[inline(always)]
fn as_block(input: &[u8]) -> &[u8; 64] {
unsafe {
assert_eq!(input.len(), 64);
let arr: &[u8; 64] = &*(input.as_ptr() as *const [u8; 64]);
arr
}
}
impl Default for Sha1 {
fn default() -> Sha1 {
Sha1::new()
}
}
impl Sha1 {
/// Creates an fresh sha1 hash object.
///
/// This is equivalent to creating a hash with `Default::default`.
pub fn new() -> Sha1 {
Sha1 {
state: DEFAULT_STATE,
len: 0,
blocks: Blocks {
len: 0,
block: [0; 64],
},
}
}
/// Shortcut to create a sha1 from some bytes.
///
/// This also lets you create a hash from a utf-8 string. This is equivalent
/// to making a new Sha1 object and calling `update` on it once.
pub fn from<D: AsRef<[u8]>>(data: D) -> Sha1 {
let mut rv = Sha1::new();
rv.update(data.as_ref());
rv
}
/// Update hash with input data.
pub fn update(&mut self, data: &[u8]) {
let len = &mut self.len;
let state = &mut self.state;
self.blocks.input(data, |block| {
*len += block.len() as u64;
state.process(block);
})
}
/// Retrieve digest result.
pub fn digest(&self) -> Digest {
let mut state = self.state;
let bits = (self.len + (self.blocks.len as u64)) * 8;
let extra = [
(bits >> 56) as u8,
(bits >> 48) as u8,
(bits >> 40) as u8,
(bits >> 32) as u8,
(bits >> 24) as u8,
(bits >> 16) as u8,
(bits >> 8) as u8,
(bits >> 0) as u8,
];
let mut last = [0; 128];
let blocklen = self.blocks.len as usize;
last[..blocklen].clone_from_slice(&self.blocks.block[..blocklen]);
last[blocklen] = 0x80;
if blocklen < 56 {
last[56..64].clone_from_slice(&extra);
state.process(as_block(&last[0..64]));
} else {
last[120..128].clone_from_slice(&extra);
state.process(as_block(&last[0..64]));
state.process(as_block(&last[64..128]));
}
Digest { data: state }
}
/// Retrieve the digest result as hex string directly.
///
/// (The function is only available if the `std` feature is enabled)
#[cfg(feature = "std")]
pub fn hexdigest(&self) -> std::string::String {
use std::string::ToString;
self.digest().to_string()
}
}
impl Digest {
/// Returns the 160 bit (20 byte) digest as a byte array.
pub fn bytes(&self) -> [u8; DIGEST_LENGTH] {
[
(self.data.state[0] >> 24) as u8,
(self.data.state[0] >> 16) as u8,
(self.data.state[0] >> 8) as u8,
(self.data.state[0] >> 0) as u8,
(self.data.state[1] >> 24) as u8,
(self.data.state[1] >> 16) as u8,
(self.data.state[1] >> 8) as u8,
(self.data.state[1] >> 0) as u8,
(self.data.state[2] >> 24) as u8,
(self.data.state[2] >> 16) as u8,
(self.data.state[2] >> 8) as u8,
(self.data.state[2] >> 0) as u8,
(self.data.state[3] >> 24) as u8,
(self.data.state[3] >> 16) as u8,
(self.data.state[3] >> 8) as u8,
(self.data.state[3] >> 0) as u8,
(self.data.state[4] >> 24) as u8,
(self.data.state[4] >> 16) as u8,
(self.data.state[4] >> 8) as u8,
(self.data.state[4] >> 0) as u8,
]
}
}
impl Blocks {
fn input<F>(&mut self, mut input: &[u8], mut f: F)
where
F: FnMut(&[u8; 64]),
{
if self.len > 0 {
let len = self.len as usize;
let amt = cmp::min(input.len(), self.block.len() - len);
self.block[len..len + amt].clone_from_slice(&input[..amt]);
if len + amt == self.block.len() {
f(&self.block);
self.len = 0;
input = &input[amt..];
} else {
self.len += amt as u32;
return;
}
}
assert_eq!(self.len, 0);
for chunk in input.chunks(64) {
if chunk.len() == 64 {
f(as_block(chunk))
} else {
self.block[..chunk.len()].clone_from_slice(chunk);
self.len = chunk.len() as u32;
}
}
}
}
// Round key constants
const K0: u32 = 0x5A827999u32;
const K1: u32 = 0x6ED9EBA1u32;
const K2: u32 = 0x8F1BBCDCu32;
const K3: u32 = 0xCA62C1D6u32;
/// Not an intrinsic, but gets the first element of a vector.
#[inline]
fn sha1_first(w0: u32x4) -> u32 {
w0.0
}
/// Not an intrinsic, but adds a word to the first element of a vector.
#[inline]
fn sha1_first_add(e: u32, w0: u32x4) -> u32x4 {
let u32x4(a, b, c, d) = w0;
u32x4(e.wrapping_add(a), b, c, d)
}
/// Emulates `llvm.x86.sha1msg1` intrinsic.
fn sha1msg1(a: u32x4, b: u32x4) -> u32x4 {
let u32x4(_, _, w2, w3) = a;
let u32x4(w4, w5, _, _) = b;
a ^ u32x4(w2, w3, w4, w5)
}
/// Emulates `llvm.x86.sha1msg2` intrinsic.
fn sha1msg2(a: u32x4, b: u32x4) -> u32x4 {
let u32x4(x0, x1, x2, x3) = a;
let u32x4(_, w13, w14, w15) = b;
let w16 = (x0 ^ w13).rotate_left(1);
let w17 = (x1 ^ w14).rotate_left(1);
let w18 = (x2 ^ w15).rotate_left(1);
let w19 = (x3 ^ w16).rotate_left(1);
u32x4(w16, w17, w18, w19)
}
/// Emulates `llvm.x86.sha1nexte` intrinsic.
#[inline]
fn sha1_first_half(abcd: u32x4, msg: u32x4) -> u32x4 {
sha1_first_add(sha1_first(abcd).rotate_left(30), msg)
}
/// Emulates `llvm.x86.sha1rnds4` intrinsic.
/// Performs 4 rounds of the message block digest.
fn sha1_digest_round_x4(abcd: u32x4, work: u32x4, i: i8) -> u32x4 {
const K0V: u32x4 = u32x4(K0, K0, K0, K0);
const K1V: u32x4 = u32x4(K1, K1, K1, K1);
const K2V: u32x4 = u32x4(K2, K2, K2, K2);
const K3V: u32x4 = u32x4(K3, K3, K3, K3);
match i {
0 => sha1rnds4c(abcd, work + K0V),
1 => sha1rnds4p(abcd, work + K1V),
2 => sha1rnds4m(abcd, work + K2V),
3 => sha1rnds4p(abcd, work + K3V),
_ => panic!("unknown icosaround index"),
}
}
/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic.
fn sha1rnds4c(abcd: u32x4, msg: u32x4) -> u32x4 {
let u32x4(mut a, mut b, mut c, mut d) = abcd;
let u32x4(t, u, v, w) = msg;
let mut e = 0u32;
macro_rules! bool3ary_202 {
($a:expr, $b:expr, $c:expr) => {
($c ^ ($a & ($b ^ $c)))
};
} // Choose, MD5F, SHA1C
e = e
.wrapping_add(a.rotate_left(5))
.wrapping_add(bool3ary_202!(b, c, d))
.wrapping_add(t);
b = b.rotate_left(30);
d = d
.wrapping_add(e.rotate_left(5))
.wrapping_add(bool3ary_202!(a, b, c))
.wrapping_add(u);
a = a.rotate_left(30);
c = c
.wrapping_add(d.rotate_left(5))
.wrapping_add(bool3ary_202!(e, a, b))
.wrapping_add(v);
e = e.rotate_left(30);
b = b
.wrapping_add(c.rotate_left(5))
.wrapping_add(bool3ary_202!(d, e, a))
.wrapping_add(w);
d = d.rotate_left(30);
u32x4(b, c, d, e)
}
/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic.
fn sha1rnds4p(abcd: u32x4, msg: u32x4) -> u32x4 {
let u32x4(mut a, mut b, mut c, mut d) = abcd;
let u32x4(t, u, v, w) = msg;
let mut e = 0u32;
macro_rules! bool3ary_150 {
($a:expr, $b:expr, $c:expr) => {
($a ^ $b ^ $c)
};
} // Parity, XOR, MD5H, SHA1P
e = e
.wrapping_add(a.rotate_left(5))
.wrapping_add(bool3ary_150!(b, c, d))
.wrapping_add(t);
b = b.rotate_left(30);
d = d
.wrapping_add(e.rotate_left(5))
.wrapping_add(bool3ary_150!(a, b, c))
.wrapping_add(u);
a = a.rotate_left(30);
c = c
.wrapping_add(d.rotate_left(5))
.wrapping_add(bool3ary_150!(e, a, b))
.wrapping_add(v);
e = e.rotate_left(30);
b = b
.wrapping_add(c.rotate_left(5))
.wrapping_add(bool3ary_150!(d, e, a))
.wrapping_add(w);
d = d.rotate_left(30);
u32x4(b, c, d, e)
}
/// Not an intrinsic, but helps emulate `llvm.x86.sha1rnds4` intrinsic.
fn sha1rnds4m(abcd: u32x4, msg: u32x4) -> u32x4 {
let u32x4(mut a, mut b, mut c, mut d) = abcd;
let u32x4(t, u, v, w) = msg;
let mut e = 0u32;
macro_rules! bool3ary_232 {
($a:expr, $b:expr, $c:expr) => {
($a & $b) ^ ($a & $c) ^ ($b & $c)
};
} // Majority, SHA1M
e = e
.wrapping_add(a.rotate_left(5))
.wrapping_add(bool3ary_232!(b, c, d))
.wrapping_add(t);
b = b.rotate_left(30);
d = d
.wrapping_add(e.rotate_left(5))
.wrapping_add(bool3ary_232!(a, b, c))
.wrapping_add(u);
a = a.rotate_left(30);
c = c
.wrapping_add(d.rotate_left(5))
.wrapping_add(bool3ary_232!(e, a, b))
.wrapping_add(v);
e = e.rotate_left(30);
b = b
.wrapping_add(c.rotate_left(5))
.wrapping_add(bool3ary_232!(d, e, a))
.wrapping_add(w);
d = d.rotate_left(30);
u32x4(b, c, d, e)
}
impl Sha1State {
fn process(&mut self, block: &[u8; 64]) {
let mut words = [0u32; 16];
for (i, word) in words.iter_mut().enumerate() {
let off = i * 4;
*word = (block[off + 3] as u32)
| ((block[off + 2] as u32) << 8)
| ((block[off + 1] as u32) << 16)
| ((block[off] as u32) << 24);
}
macro_rules! schedule {
($v0:expr, $v1:expr, $v2:expr, $v3:expr) => {
sha1msg2(sha1msg1($v0, $v1) ^ $v2, $v3)
};
}
macro_rules! rounds4 {
($h0:ident, $h1:ident, $wk:expr, $i:expr) => {
sha1_digest_round_x4($h0, sha1_first_half($h1, $wk), $i)
};
}
// Rounds 0..20
let mut h0 = u32x4(self.state[0], self.state[1], self.state[2], self.state[3]);
let mut w0 = u32x4(words[0], words[1], words[2], words[3]);
let mut h1 = sha1_digest_round_x4(h0, sha1_first_add(self.state[4], w0), 0);
let mut w1 = u32x4(words[4], words[5], words[6], words[7]);
h0 = rounds4!(h1, h0, w1, 0);
let mut w2 = u32x4(words[8], words[9], words[10], words[11]);
h1 = rounds4!(h0, h1, w2, 0);
let mut w3 = u32x4(words[12], words[13], words[14], words[15]);
h0 = rounds4!(h1, h0, w3, 0);
let mut w4 = schedule!(w0, w1, w2, w3);
h1 = rounds4!(h0, h1, w4, 0);
// Rounds 20..40
w0 = schedule!(w1, w2, w3, w4);
h0 = rounds4!(h1, h0, w0, 1);
w1 = schedule!(w2, w3, w4, w0);
h1 = rounds4!(h0, h1, w1, 1);
w2 = schedule!(w3, w4, w0, w1);
h0 = rounds4!(h1, h0, w2, 1);
w3 = schedule!(w4, w0, w1, w2);
h1 = rounds4!(h0, h1, w3, 1);
w4 = schedule!(w0, w1, w2, w3);
h0 = rounds4!(h1, h0, w4, 1);
// Rounds 40..60
w0 = schedule!(w1, w2, w3, w4);
h1 = rounds4!(h0, h1, w0, 2);
w1 = schedule!(w2, w3, w4, w0);
h0 = rounds4!(h1, h0, w1, 2);
w2 = schedule!(w3, w4, w0, w1);
h1 = rounds4!(h0, h1, w2, 2);
w3 = schedule!(w4, w0, w1, w2);
h0 = rounds4!(h1, h0, w3, 2);
w4 = schedule!(w0, w1, w2, w3);
h1 = rounds4!(h0, h1, w4, 2);
// Rounds 60..80
w0 = schedule!(w1, w2, w3, w4);
h0 = rounds4!(h1, h0, w0, 3);
w1 = schedule!(w2, w3, w4, w0);
h1 = rounds4!(h0, h1, w1, 3);
w2 = schedule!(w3, w4, w0, w1);
h0 = rounds4!(h1, h0, w2, 3);
w3 = schedule!(w4, w0, w1, w2);
h1 = rounds4!(h0, h1, w3, 3);
w4 = schedule!(w0, w1, w2, w3);
h0 = rounds4!(h1, h0, w4, 3);
let e = sha1_first(h1).rotate_left(30);
let u32x4(a, b, c, d) = h0;
self.state[0] = self.state[0].wrapping_add(a);
self.state[1] = self.state[1].wrapping_add(b);
self.state[2] = self.state[2].wrapping_add(c);
self.state[3] = self.state[3].wrapping_add(d);
self.state[4] = self.state[4].wrapping_add(e);
}
}
impl PartialEq for Blocks {
fn eq(&self, other: &Blocks) -> bool {
(self.len, &self.block[..]).eq(&(other.len, &other.block[..]))
}
}
impl Ord for Blocks {
fn cmp(&self, other: &Blocks) -> cmp::Ordering {
(self.len, &self.block[..]).cmp(&(other.len, &other.block[..]))
}
}
impl PartialOrd for Blocks {
fn partial_cmp(&self, other: &Blocks) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Eq for Blocks {}
impl hash::Hash for Blocks {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.len.hash(state);
self.block.hash(state);
}
}
impl Clone for Blocks {
fn clone(&self) -> Blocks {
Blocks { ..*self }
}
}
/// Indicates that a digest couldn't be parsed.
#[derive(Copy, Clone, Hash, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct DigestParseError(());
impl fmt::Display for DigestParseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "not a valid sha1 hash")
}
}
impl str::FromStr for Digest {
type Err = DigestParseError;
fn from_str(s: &str) -> Result<Digest, DigestParseError> {
if s.len() != 40 {
return Err(DigestParseError(()));
}
let mut rv: Digest = Default::default();
for idx in 0..5 {
rv.data.state[idx] = u32::from_str_radix(&s[idx * 8..idx * 8 + 8], 16)
.map_err(|_| DigestParseError(()))?;
}
Ok(rv)
}
}
impl fmt::Display for Digest {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in self.data.state.iter() {
write!(f, "{:08x}", i)?;
}
Ok(())
}
}
impl fmt::Debug for Digest {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Digest {{ \"{}\" }}", self)
}
}