1
Fork 0

Add initial files

This commit is contained in:
Joshua Goins 2024-04-15 22:15:40 -04:00
commit cd17480368
17 changed files with 5741 additions and 0 deletions

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
.directory
/cmake-*build*

11
CMakeLists.txt Normal file
View file

@ -0,0 +1,11 @@
cmake_minimum_required(VERSION 3.16)
project(pkgrip)
add_executable(pkgrip
src/libkirk/aes.c
src/libkirk/amctrl.c
src/libkirk/bn.c
src/libkirk/ec.c
src/libkirk/kirk_engine.c
src/libkirk/sha1.c
src/pkgrip.c)

674
LICENSE Normal file
View file

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

31
README.md Normal file
View file

@ -0,0 +1,31 @@
# pkgrip
Tool for decrypting PS3/PSP [PKG files](https://psdevwiki.com/ps3/PKG_files).
This is modified [from it's original source code](https://github.com/qwikrazor87/pkgrip) to include some patches, and fixes I needed for what I needed the tool for. I also ported to CMake.
## Usage
Compile with CMake and then run `pkgrip`:
```shell
$ ./pkgrip
Usage:
pkgrip [options] pathtopkg
Options: (optional)
-psp - extract PSP files only
-ps3 - extract PS3 files only
Both enabled by default.
```
## Credits
* [qwikrazor87](https://github.com/qwikrazor87) for writing pkgrip.
* [misha](https://github.com/it-misha) for her patch to increase the supported file up to 16 GB.
## License
![GPLv3](https://www.gnu.org/graphics/gplv3-127x51.png)
This project is licensed under the GNU General Public License 3. Some parts of libkirk may be licensed differently.

1463
src/libkirk/aes.c Normal file

File diff suppressed because it is too large Load diff

51
src/libkirk/aes.h Normal file
View file

@ -0,0 +1,51 @@
#ifndef __RIJNDAEL_H
#define __RIJNDAEL_H
#include "kirk_engine.h"
#define AES_KEY_LEN_128 (128)
#define AES_KEY_LEN_192 (192)
#define AES_KEY_LEN_256 (256)
#define AES_BUFFER_SIZE (16)
#define AES_MAXKEYBITS (256)
#define AES_MAXKEYBYTES (AES_MAXKEYBITS/8)
/* for 256-bit keys, fewer for less */
#define AES_MAXROUNDS 14
#define pwuAESContextBuffer rijndael_ctx
/* The structure for key information */
typedef struct
{
int enc_only; /* context contains only encrypt schedule */
int Nr; /* key-length-dependent number of rounds */
u32 ek[4*(AES_MAXROUNDS + 1)]; /* encrypt key schedule */
u32 dk[4*(AES_MAXROUNDS + 1)]; /* decrypt key schedule */
} rijndael_ctx;
typedef struct
{
int enc_only; /* context contains only encrypt schedule */
int Nr; /* key-length-dependent number of rounds */
u32 ek[4*(AES_MAXROUNDS + 1)]; /* encrypt key schedule */
u32 dk[4*(AES_MAXROUNDS + 1)]; /* decrypt key schedule */
} AES_ctx;
int rijndael_set_key(rijndael_ctx *, const u8 *, int);
int rijndael_set_key_enc_only(rijndael_ctx *, const u8 *, int);
void rijndael_decrypt(rijndael_ctx *, const u8 *, u8 *);
void rijndael_encrypt(rijndael_ctx *, const u8 *, u8 *);
int AES_set_key(AES_ctx *ctx, const u8 *key, int bits);
void AES_encrypt(AES_ctx *ctx, const u8 *src, u8 *dst);
void AES_decrypt(AES_ctx *ctx, const u8 *src, u8 *dst);
void AES_cbc_encrypt(AES_ctx *ctx, u8 *src, u8 *dst, int size);
void AES_cbc_decrypt(AES_ctx *ctx, u8 *src, u8 *dst, int size);
void AES_CMAC(AES_ctx *ctx, unsigned char *input, int length, unsigned char *mac);
int rijndaelKeySetupEnc(unsigned int [], const unsigned char [], int);
int rijndaelKeySetupDec(unsigned int [], const unsigned char [], int);
void rijndaelEncrypt(const unsigned int [], int, const unsigned char [], unsigned char []);
#endif /* __RIJNDAEL_H */

825
src/libkirk/amctrl.c Normal file
View file

@ -0,0 +1,825 @@
// Copyright (C) 2013 tpu
// Copyright (C) 2015 Hykem <hykem@hotmail.com>
// Licensed under the terms of the GNU GPL, version 3
// http://www.gnu.org/licenses/gpl-3.0.txt
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "kirk_engine.h"
#include "amctrl.h"
#include "aes.h"
// KIRK buffer.
static u8 kirk_buf[0x0814];
// AMCTRL keys.
static u8 amctrl_key1[0x10] = {0xE3, 0x50, 0xED, 0x1D, 0x91, 0x0A, 0x1F, 0xD0, 0x29, 0xBB, 0x1C, 0x3E, 0xF3, 0x40, 0x77, 0xFB};
static u8 amctrl_key2[0x10] = {0x13, 0x5F, 0xA4, 0x7C, 0xAB, 0x39, 0x5B, 0xA4, 0x76, 0xB8, 0xCC, 0xA9, 0x8F, 0x3A, 0x04, 0x45};
static u8 amctrl_key3[0x10] = {0x67, 0x8D, 0x7F, 0xA3, 0x2A, 0x9C, 0xA0, 0xD1, 0x50, 0x8A, 0xD8, 0x38, 0x5E, 0x4B, 0x01, 0x7E};
u8 dnas_key1A90[] = {0xED,0xE2,0x5D,0x2D,0xBB,0xF8,0x12,0xE5,0x3C,0x5C,0x59,0x32,0xFA,0xE3,0xE2,0x43};
u8 dnas_key1AA0[] = {0x27,0x74,0xFB,0xEB,0xA4,0xA0,0x01,0xD7,0x02,0x56,0x9E,0x33,0x8C,0x19,0x57,0x83};
// sceNpDrmGetFixedKey keys.
static u8 npdrm_enc_keys[0x30] = {
0x07, 0x3D, 0x9E, 0x9D, 0xA8, 0xFD, 0x3B, 0x2F, 0x63, 0x18, 0x93, 0x2E, 0xF8, 0x57, 0xA6, 0x64,
0x37, 0x49, 0xB7, 0x01, 0xCA, 0xE2, 0xE0, 0xC5, 0x44, 0x2E, 0x06, 0xB6, 0x1E, 0xFF, 0x84, 0xF2,
0x9D, 0x31, 0xB8, 0x5A, 0xC8, 0xFA, 0x16, 0x80, 0x73, 0x60, 0x18, 0x82, 0x18, 0x77, 0x91, 0x9D,
};
static u8 npdrm_fixed_key[0x10] = {
0x38, 0x20, 0xD0, 0x11, 0x07, 0xA3, 0xFF, 0x3E, 0x0A, 0x4C, 0x20, 0x85, 0x39, 0x10, 0xB5, 0x54,
};
/*
KIRK wrapper functions.
*/
static int kirk4(u8 *buf, int size, int type)
{
int retv;
u32 *header = (u32*)buf;
header[0] = 4;
header[1] = 0;
header[2] = 0;
header[3] = type;
header[4] = size;
retv = sceUtilsBufferCopyWithRange(buf, size + 0x14, buf, size, 4);
if (retv)
return 0x80510311;
return 0;
}
static int kirk7(u8 *buf, int size, int type)
{
int retv;
u32 *header = (u32*)buf;
header[0] = 5;
header[1] = 0;
header[2] = 0;
header[3] = type;
header[4] = size;
retv = sceUtilsBufferCopyWithRange(buf, size + 0x14, buf, size, 7);
if (retv)
return 0x80510311;
return 0;
}
static int kirk5(u8 *buf, int size)
{
int retv;
u32 *header = (u32*)buf;
header[0] = 4;
header[1] = 0;
header[2] = 0;
header[3] = 0x0100;
header[4] = size;
retv = sceUtilsBufferCopyWithRange(buf, size + 0x14, buf, size, 5);
if (retv)
return 0x80510312;
return 0;
}
static int kirk8(u8 *buf, int size)
{
int retv;
u32 *header = (u32*)buf;
header[0] = 5;
header[1] = 0;
header[2] = 0;
header[3] = 0x0100;
header[4] = size;
retv = sceUtilsBufferCopyWithRange(buf, size+0x14, buf, size, 8);
if (retv)
return 0x80510312;
return 0;
}
static int kirk14(u8 *buf)
{
int retv;
retv = sceUtilsBufferCopyWithRange(buf, 0x14, 0, 0, 14);
if (retv)
return 0x80510315;
return 0;
}
/*
Internal functions.
*/
static int encrypt_buf(u8 *buf, int size, u8 *key, int key_type)
{
int i, retv;
for (i = 0; i < 16; i++) {
buf[0x14+i] ^= key[i];
}
retv = kirk4(buf, size, key_type);
if (retv)
return retv;
memcpy(key, buf + size + 4, 16);
return 0;
}
static int decrypt_buf(u8 *buf, int size, u8 *key, int key_type)
{
int i, retv;
u8 tmp[16];
memcpy(tmp, buf + size + 0x14 - 16, 16);
retv = kirk7(buf, size, key_type);
if (retv)
return retv;
for (i = 0; i < 16; i++) {
buf[i] ^= key[i];
}
memcpy(key, tmp, 16);
return 0;
}
static int cipher_buf(u8 *kbuf, u8 *dbuf, int size, CIPHER_KEY *ckey)
{
int i, retv;
u8 tmp1[16], tmp2[16];
memcpy(kbuf + 0x14, ckey->key, 16);
for (i = 0; i < 16; i++) {
kbuf[0x14 + i] ^= amctrl_key3[i];
}
if (ckey->type == 2)
retv = kirk8(kbuf, 16);
else
retv = kirk7(kbuf, 16, 0x39);
if (retv)
return retv;
for (i = 0; i < 16; i++) {
kbuf[i] ^= amctrl_key2[i];
}
memcpy(tmp2, kbuf, 0x10);
if (ckey->seed == 1) {
memset(tmp1, 0, 0x10);
} else {
memcpy(tmp1, tmp2, 0x10);
*(u32*)(tmp1 + 0x0c) = ckey->seed - 1;
}
for (i = 0; i < size; i += 16) {
memcpy(kbuf + 0x14 + i, tmp2, 12);
*(u32*)(kbuf + 0x14 + i + 12) = ckey->seed;
ckey->seed += 1;
}
retv = decrypt_buf(kbuf, size, tmp1, 0x63);
if (retv)
return retv;
for (i = 0; i < size; i++) {
dbuf[i] ^= kbuf[i];
}
return 0;
}
/*
BBMac functions.
*/
int sceDrmBBMacInit(MAC_KEY *mkey, int type)
{
mkey->type = type;
mkey->pad_size = 0;
memset(mkey->key, 0, 16);
memset(mkey->pad, 0, 16);
return 0;
}
int sceDrmBBMacUpdate(MAC_KEY *mkey, u8 *buf, int size)
{
int retv = 0, ksize, p, type;
u8 *kbuf;
if (mkey->pad_size > 16) {
retv = 0x80510302;
goto _exit;
}
if (mkey->pad_size + size <= 16) {
memcpy(mkey->pad + mkey->pad_size, buf, size);
mkey->pad_size += size;
retv = 0;
} else {
kbuf = kirk_buf + 0x14;
memcpy(kbuf, mkey->pad, mkey->pad_size);
p = mkey->pad_size;
mkey->pad_size += size;
mkey->pad_size &= 0x0f;
if (mkey->pad_size == 0)
mkey->pad_size = 16;
size -= mkey->pad_size;
memcpy(mkey->pad, buf + size, mkey->pad_size);
type = (mkey->type == 2) ? 0x3A : 0x38;
while (size)
{
ksize = (size + p >= 0x0800) ? 0x0800 : size + p;
memcpy(kbuf + p, buf, ksize - p);
retv = encrypt_buf(kirk_buf, ksize, mkey->key, type);
if (retv)
goto _exit;
size -= (ksize - p);
buf += ksize - p;
p = 0;
}
}
_exit:
return retv;
}
int sceDrmBBMacFinal(MAC_KEY *mkey, u8 *buf, u8 *vkey)
{
int i, retv, code;
u8 *kbuf, tmp[16], tmp1[16];
u32 t0, v0, v1;
if (mkey->pad_size > 16)
return 0x80510302;
code = (mkey->type == 2) ? 0x3A : 0x38;
kbuf = kirk_buf + 0x14;
memset(kbuf, 0, 16);
retv = kirk4(kirk_buf, 16, code);
if (retv)
goto _exit;
memcpy(tmp, kbuf, 16);
t0 = (tmp[0] & 0x80) ? 0x87 : 0;
for (i = 0; i < 15; i++)
{
v1 = tmp[i + 0];
v0 = tmp[i + 1];
v1 <<= 1;
v0 >>= 7;
v0 |= v1;
tmp[i + 0] = v0;
}
v0 = tmp[15];
v0 <<= 1;
v0 ^= t0;
tmp[15] = v0;
if (mkey->pad_size < 16)
{
t0 = (tmp[0] & 0x80) ? 0x87 : 0;
for (i = 0; i < 15; i++)
{
v1 = tmp[i + 0];
v0 = tmp[i + 1];
v1 <<= 1;
v0 >>= 7;
v0 |= v1;
tmp[i + 0] = v0;
}
v0 = tmp[15];
v0 <<= 1;
v0 ^= t0;
tmp[15] = v0;
mkey->pad[mkey->pad_size] = 0x80;
if (mkey->pad_size + 1 < 16)
memset(mkey->pad + mkey->pad_size + 1, 0, 16 - mkey->pad_size - 1);
}
for (i = 0; i < 16; i++) {
mkey->pad[i] ^= tmp[i];
}
memcpy(kbuf, mkey->pad, 16);
memcpy(tmp1, mkey->key, 16);
retv = encrypt_buf(kirk_buf, 0x10, tmp1, code);
if (retv)
return retv;
for (i = 0; i < 0x10; i++) {
tmp1[i] ^= amctrl_key1[i];
}
if (mkey->type == 2)
{
memcpy(kbuf, tmp1, 16);
retv = kirk5(kirk_buf, 0x10);
if (retv)
goto _exit;
retv = kirk4(kirk_buf, 0x10, code);
if (retv)
goto _exit;
memcpy(tmp1, kbuf, 16);
}
if (vkey)
{
for (i = 0; i < 0x10; i++) {
tmp1[i] ^= vkey[i];
}
memcpy(kbuf, tmp1, 16);
retv = kirk4(kirk_buf, 0x10, code);
if (retv)
goto _exit;
memcpy(tmp1, kbuf, 16);
}
memcpy(buf, tmp1, 16);
memset(mkey->key, 0, 16);
memset(mkey->pad, 0, 16);
mkey->pad_size = 0;
mkey->type = 0;
retv = 0;
_exit:
return retv;
}
int sceDrmBBMacFinal2(MAC_KEY *mkey, u8 *out, u8 *vkey)
{
int i, retv, type;
u8 *kbuf, tmp[16];
type = mkey->type;
retv = sceDrmBBMacFinal(mkey, tmp, vkey);
if (retv)
return retv;
kbuf = kirk_buf+0x14;
if (type == 3) {
memcpy(kbuf, out, 0x10);
kirk7(kirk_buf, 0x10, 0x63);
} else {
memcpy(kirk_buf, out, 0x10);
}
retv = 0;
for (i = 0; i < 0x10; i++) {
if (kirk_buf[i] != tmp[i]) {
retv = 0x80510300;
break;
}
}
return retv;
}
/*
BBCipher functions.
*/
int sceDrmBBCipherInit(CIPHER_KEY *ckey, int type, int mode, u8 *header_key, u8 *version_key, u32 seed)
{
int i, retv;
u8 *kbuf;
kbuf = kirk_buf + 0x14;
ckey->type = type;
if (mode == 2)
{
ckey->seed = seed + 1;
for (i = 0; i < 16; i++) {
ckey->key[i] = header_key[i];
}
if (version_key) {
for (i = 0; i < 16; i++) {
ckey->key[i] ^= version_key[i];
}
}
retv = 0;
}
else if (mode == 1)
{
ckey->seed = 1;
retv = kirk14(kirk_buf);
if (retv)
return retv;
memcpy(kbuf, kirk_buf, 0x10);
memset(kbuf + 0x0c, 0, 4);
if (ckey->type == 2)
{
for (i = 0; i < 16; i++) {
kbuf[i] ^= amctrl_key2[i];
}
retv = kirk5(kirk_buf, 0x10);
for (i = 0; i < 16; i++) {
kbuf[i] ^= amctrl_key3[i];
}
}
else
{
for (i = 0; i < 16; i++) {
kbuf[i] ^= amctrl_key2[i];
}
retv = kirk4(kirk_buf, 0x10, 0x39);
for(i = 0; i < 16; i++) {
kbuf[i] ^= amctrl_key3[i];
}
}
if (retv)
return retv;
memcpy(ckey->key, kbuf, 0x10);
memcpy(header_key, kbuf, 0x10);
if (version_key)
{
for (i = 0; i < 16; i++) {
ckey->key[i] ^= version_key[i];
}
}
}
else
{
retv = 0;
}
return retv;
}
int sceDrmBBCipherUpdate(CIPHER_KEY *ckey, u8 *data, int size)
{
int p, retv, dsize;
retv = 0;
p = 0;
while (size > 0)
{
dsize = (size >= 0x0800) ? 0x0800 : size;
retv = cipher_buf(kirk_buf, data + p, dsize, ckey);
if (retv)
break;
size -= dsize;
p += dsize;
}
return retv;
}
int sceDrmBBCipherFinal(CIPHER_KEY *ckey)
{
memset(ckey->key, 0, 16);
ckey->type = 0;
ckey->seed = 0;
return 0;
}
/*
Extra functions.
*/
int bbmac_build_final2(int type, u8 *mac)
{
u8 *kbuf = kirk_buf + 0x14;
if (type == 3)
{
memcpy(kbuf, mac, 16);
kirk4(kirk_buf, 0x10, 0x63);
memcpy(mac, kbuf, 16);
}
return 0;
}
int bbmac_getkey(MAC_KEY *mkey, u8 *bbmac, u8 *vkey)
{
int i, retv, type, code;
u8 *kbuf, tmp[16], tmp1[16];
type = mkey->type;
retv = sceDrmBBMacFinal(mkey, tmp, NULL);
if (retv)
return retv;
kbuf = kirk_buf + 0x14;
if (type == 3) {
memcpy(kbuf, bbmac, 0x10);
kirk7(kirk_buf, 0x10, 0x63);
} else {
memcpy(kirk_buf, bbmac, 0x10);
}
memcpy(tmp1, kirk_buf, 16);
memcpy(kbuf, tmp1, 16);
code = (type == 2) ? 0x3A : 0x38;
kirk7(kirk_buf, 0x10, code);
for (i = 0; i < 0x10; i++) {
vkey[i] = tmp[i] ^ kirk_buf[i];
}
return 0;
}
int bbmac_forge(MAC_KEY *mkey, u8 *bbmac, u8 *vkey, u8 *buf)
{
int i, retv, type;
u8 *kbuf, tmp[16], tmp1[16];
u32 t0, v0, v1;
if (mkey->pad_size > 16)
return 0x80510302;
type = (mkey->type == 2) ? 0x3A : 0x38;
kbuf = kirk_buf + 0x14;
memset(kbuf, 0, 16);
retv = kirk4(kirk_buf, 16, type);
if (retv)
return retv;
memcpy(tmp, kbuf, 16);
t0 = (tmp[0] & 0x80) ? 0x87 : 0;
for (i = 0; i < 15; i++)
{
v1 = tmp[i + 0];
v0 = tmp[i + 1];
v1 <<= 1;
v0 >>= 7;
v0 |= v1;
tmp[i + 0] = v0;
}
v0 = tmp[15];
v0 <<= 1;
v0 ^= t0;
tmp[15] = v0;
if (mkey->pad_size < 16)
{
t0 = (tmp[0] & 0x80) ? 0x87 : 0;
for (i = 0; i < 15; i++)
{
v1 = tmp[i + 0];
v0 = tmp[i + 1];
v1 <<= 1;
v0 >>= 7;
v0 |= v1;
tmp[i + 0] = v0;
}
v0 = tmp[15];
v0 <<= 1;
v0 ^= t0;
tmp[15] = t0;
mkey->pad[mkey->pad_size] = 0x80;
if (mkey->pad_size + 1 < 16)
memset(mkey->pad+mkey->pad_size + 1, 0, 16 - mkey->pad_size - 1);
}
for (i = 0; i < 16; i++) {
mkey->pad[i] ^= tmp[i];
}
for (i = 0; i < 0x10; i++) {
mkey->pad[i] ^= mkey->key[i];
}
memcpy(kbuf, bbmac, 0x10);
kirk7(kirk_buf, 0x10, 0x63);
memcpy(kbuf, kirk_buf, 0x10);
kirk7(kirk_buf, 0x10, type);
memcpy(tmp1, kirk_buf, 0x10);
for (i = 0; i < 0x10; i++) {
tmp1[i] ^= vkey[i];
}
for (i = 0; i < 0x10; i++) {
tmp1[i] ^= amctrl_key1[i];
}
memcpy(kbuf, tmp1, 0x10);
kirk7(kirk_buf, 0x10, type);
memcpy(tmp1, kirk_buf, 0x10);
for (i = 0; i < 16; i++) {
mkey->pad[i] ^= tmp1[i];
}
for (i = 0; i < 16; i++) {
buf[i] ^= mkey->pad[i];
}
return 0;
}
/*
sceNpDrm functions.
*/
int sceNpDrmGetFixedKey(u8 *key, char *npstr, int type)
{
AES_ctx akey;
MAC_KEY mkey;
char strbuf[0x30];
int retv;
if ((type & 0x01000000) == 0)
return 0x80550901;
type &= 0x000000ff;
memset(strbuf, 0, 0x30);
strncpy(strbuf, npstr, 0x30);
retv = sceDrmBBMacInit(&mkey, 1);
if (retv)
return retv;
retv = sceDrmBBMacUpdate(&mkey, (u8*)strbuf, 0x30);
if (retv)
return retv;
retv = sceDrmBBMacFinal(&mkey, key, npdrm_fixed_key);
if (retv)
return 0x80550902;
if (type == 0)
return 0;
if (type > 3)
return 0x80550901;
type = (type - 1) * 16;
AES_set_key(&akey, &npdrm_enc_keys[type], 128);
AES_encrypt(&akey, key, key);
return 0;
}
int decrypt_pgd(u8* pgd_data, int pgd_size, int flag, u8* key __attribute__((unused)))
{
int result;
PGD_HEADER PGD[sizeof(PGD_HEADER)];
MAC_KEY mkey;
CIPHER_KEY ckey;
u8* fkey;
// Read in the PGD header parameters.
memset(PGD, 0, sizeof(PGD_HEADER));
PGD->buf = pgd_data;
PGD->key_index = *(u32*)(pgd_data + 4);
PGD->drm_type = *(u32*)(pgd_data + 8);
// Set the hashing, crypto and open modes.
if (PGD->drm_type == 1) {
PGD->mac_type = 1;
flag |= 4;
if(PGD->key_index > 1) {
PGD->mac_type = 3;
flag |= 8;
}
PGD->cipher_type = 1;
} else {
PGD->mac_type = 2;
PGD->cipher_type = 2;
}
PGD->open_flag = flag;
// Get the fixed DNAS key.
fkey = NULL;
if ((flag & 0x2) == 0x2)
fkey = dnas_key1A90;
if ((flag & 0x1) == 0x1)
fkey = dnas_key1AA0;
if (fkey == NULL) {
printf("PGD: Invalid PGD DNAS flag! %08x\n", flag);
return -1;
}
// Test MAC hash at 0x80 (DNAS hash).
sceDrmBBMacInit(&mkey, PGD->mac_type);
sceDrmBBMacUpdate(&mkey, pgd_data, 0x80);
result = sceDrmBBMacFinal2(&mkey, pgd_data + 0x80, fkey);
if (result) {
printf("PGD: Invalid PGD 0x80 MAC hash!\n");
return -1;
}
// Test MAC hash at 0x70 (key hash).
sceDrmBBMacInit(&mkey, PGD->mac_type);
sceDrmBBMacUpdate(&mkey, pgd_data, 0x70);
// Generate the key from MAC 0x70.
bbmac_getkey(&mkey, pgd_data + 0x70, PGD->vkey);
// Decrypt the PGD header block (0x30 bytes).
sceDrmBBCipherInit(&ckey, PGD->cipher_type, 2, pgd_data + 0x10, PGD->vkey, 0);
sceDrmBBCipherUpdate(&ckey, pgd_data + 0x30, 0x30);
sceDrmBBCipherFinal(&ckey);
// Get the decryption parameters from the decrypted header.
PGD->data_size = *(u32*)(pgd_data + 0x44);
PGD->block_size = *(u32*)(pgd_data + 0x48);
PGD->data_offset = *(u32*)(pgd_data + 0x4c);
// Additional size variables.
PGD->align_size = (PGD->data_size + 15) &~ 15;
PGD->table_offset = PGD->data_offset + PGD->align_size;
PGD->block_nr = (PGD->align_size + PGD->block_size - 1) &~ (PGD->block_size - 1);
PGD->block_nr = PGD->block_nr / PGD->block_size;
if ((PGD->align_size + PGD->block_nr * 16) > pgd_size) {
printf("ERROR: Invalid PGD data size!\n");
return -1;
}
// Test MAC hash at 0x60 (table hash).
sceDrmBBMacInit(&mkey, PGD->mac_type);
sceDrmBBMacUpdate(&mkey, pgd_data + PGD->table_offset, PGD->block_nr * 16);
result = sceDrmBBMacFinal2(&mkey, pgd_data + 0x60, PGD->vkey);
if (result) {
printf("ERROR: Invalid PGD 0x60 MAC hash!\n");
return -1;
}
// Decrypt the data.
sceDrmBBCipherInit(&ckey, PGD->cipher_type, 2, pgd_data + 0x30, PGD->vkey, 0);
sceDrmBBCipherUpdate(&ckey, pgd_data + 0x90, PGD->align_size);
sceDrmBBCipherFinal(&ckey);
return PGD->data_size;
}

59
src/libkirk/amctrl.h Normal file
View file

@ -0,0 +1,59 @@
// Copyright (C) 2013 tpu
// Copyright (C) 2015 Hykem <hykem@hotmail.com>
// Licensed under the terms of the GNU GPL, version 3
// http://www.gnu.org/licenses/gpl-3.0.txt
#ifndef AMCTRL_H
#define AMCTRL_H
typedef struct
{
int type;
u8 key[16];
u8 pad[16];
int pad_size;
} MAC_KEY;
typedef struct
{
u32 type;
u32 seed;
u8 key[16];
} CIPHER_KEY;
typedef struct {
unsigned char vkey[16];
int open_flag;
int key_index;
int drm_type;
int mac_type;
int cipher_type;
int data_size;
int align_size;
int block_size;
int block_nr;
int data_offset;
int table_offset;
unsigned char *buf;
} PGD_HEADER;
int sceDrmBBMacInit(MAC_KEY *mkey, int type);
int sceDrmBBMacUpdate(MAC_KEY *mkey, u8 *buf, int size);
int sceDrmBBMacFinal(MAC_KEY *mkey, u8 *buf, u8 *vkey);
int sceDrmBBMacFinal2(MAC_KEY *mkey, u8 *out, u8 *vkey);
int bbmac_build_final2(int type, u8 *mac);
int bbmac_getkey(MAC_KEY *mkey, u8 *bbmac, u8 *vkey);
int bbmac_forge(MAC_KEY *mkey, u8 *bbmac, u8 *vkey, u8 *buf);
int sceDrmBBCipherInit(CIPHER_KEY *ckey, int type, int mode, u8 *header_key, u8 *version_key, u32 seed);
int sceDrmBBCipherUpdate(CIPHER_KEY *ckey, u8 *data, int size);
int sceDrmBBCipherFinal(CIPHER_KEY *ckey);
int sceNpDrmGetFixedKey(u8 *key, char *npstr, int type);
int decrypt_pgd(u8* pgd_data, int pgd_size, int flag, u8* key __attribute__((unused)));
#endif

200
src/libkirk/bn.c Normal file
View file

@ -0,0 +1,200 @@
// Copyright 2007,2008,2010 Segher Boessenkool <segher@kernel.crashing.org>
// Licensed under the terms of the GNU GPL, version 2
// http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
#include <string.h>
#include <stdio.h>
#include "kirk_engine.h"
void bn_print(char *name, u8 *a, u32 n)
{
u32 i;
printf("%s = ", name);
for (i = 0; i < n; i++)
printf("%02x", a[i]);
printf("\n");
}
static void bn_zero(u8 *d, u32 n)
{
memset(d, 0, n);
}
void bn_copy(u8 *d, u8 *a, u32 n)
{
memcpy(d, a, n);
}
int bn_compare(u8 *a, u8 *b, u32 n)
{
u32 i;
for (i = 0; i < n; i++) {
if (a[i] < b[i])
return -1;
if (a[i] > b[i])
return 1;
}
return 0;
}
static u8 bn_add_1(u8 *d, u8 *a, u8 *b, u32 n)
{
u32 i;
u32 dig;
u8 c;
c = 0;
for (i = n - 1; i < n; i--) {
dig = a[i] + b[i] + c;
c = dig >> 8;
d[i] = dig;
}
return c;
}
static u8 bn_sub_1(u8 *d, u8 *a, u8 *b, u32 n)
{
u32 i;
u32 dig;
u8 c;
c = 1;
for (i = n - 1; i < n; i--) {
dig = a[i] + 255 - b[i] + c;
c = dig >> 8;
d[i] = dig;
}
return 1 - c;
}
void bn_reduce(u8 *d, u8 *N, u32 n)
{
if (bn_compare(d, N, n) >= 0)
bn_sub_1(d, d, N, n);
}
void bn_add(u8 *d, u8 *a, u8 *b, u8 *N, u32 n)
{
if (bn_add_1(d, a, b, n))
bn_sub_1(d, d, N, n);
bn_reduce(d, N, n);
}
void bn_sub(u8 *d, u8 *a, u8 *b, u8 *N, u32 n)
{
if (bn_sub_1(d, a, b, n))
bn_add_1(d, d, N, n);
}
static const u8 inv256[0x80] = {
0x01, 0xab, 0xcd, 0xb7, 0x39, 0xa3, 0xc5, 0xef,
0xf1, 0x1b, 0x3d, 0xa7, 0x29, 0x13, 0x35, 0xdf,
0xe1, 0x8b, 0xad, 0x97, 0x19, 0x83, 0xa5, 0xcf,
0xd1, 0xfb, 0x1d, 0x87, 0x09, 0xf3, 0x15, 0xbf,
0xc1, 0x6b, 0x8d, 0x77, 0xf9, 0x63, 0x85, 0xaf,
0xb1, 0xdb, 0xfd, 0x67, 0xe9, 0xd3, 0xf5, 0x9f,
0xa1, 0x4b, 0x6d, 0x57, 0xd9, 0x43, 0x65, 0x8f,
0x91, 0xbb, 0xdd, 0x47, 0xc9, 0xb3, 0xd5, 0x7f,
0x81, 0x2b, 0x4d, 0x37, 0xb9, 0x23, 0x45, 0x6f,
0x71, 0x9b, 0xbd, 0x27, 0xa9, 0x93, 0xb5, 0x5f,
0x61, 0x0b, 0x2d, 0x17, 0x99, 0x03, 0x25, 0x4f,
0x51, 0x7b, 0x9d, 0x07, 0x89, 0x73, 0x95, 0x3f,
0x41, 0xeb, 0x0d, 0xf7, 0x79, 0xe3, 0x05, 0x2f,
0x31, 0x5b, 0x7d, 0xe7, 0x69, 0x53, 0x75, 0x1f,
0x21, 0xcb, 0xed, 0xd7, 0x59, 0xc3, 0xe5, 0x0f,
0x11, 0x3b, 0x5d, 0xc7, 0x49, 0x33, 0x55, 0xff,
};
static void bn_mon_muladd_dig(u8 *d, u8 *a, u8 b, u8 *N, u32 n)
{
u32 dig;
u32 i;
u8 z = -(d[n-1] + a[n-1]*b) * inv256[N[n-1]/2];
dig = d[n-1] + a[n-1]*b + N[n-1]*z;
dig >>= 8;
for (i = n - 2; i < n; i--) {
dig += d[i] + a[i]*b + N[i]*z;
d[i+1] = dig;
dig >>= 8;
}
d[0] = dig;
dig >>= 8;
if (dig)
bn_sub_1(d, d, N, n);
bn_reduce(d, N, n);
}
void bn_mon_mul(u8 *d, u8 *a, u8 *b, u8 *N, u32 n)
{
u8 t[512];
u32 i;
bn_zero(t, n);
for (i = n - 1; i < n; i--)
bn_mon_muladd_dig(t, a, b[i], N, n);
bn_copy(d, t, n);
}
void bn_to_mon(u8 *d, u8 *N, u32 n)
{
u32 i;
for (i = 0; i < 8*n; i++)
bn_add(d, d, d, N, n);
}
void bn_from_mon(u8 *d, u8 *N, u32 n)
{
u8 t[512];
bn_zero(t, n);
t[n-1] = 1;
bn_mon_mul(d, d, t, N, n);
}
static void bn_mon_exp(u8 *d, u8 *a, u8 *N, u32 n, u8 *e, u32 en)
{
u8 t[512];
u32 i;
u8 mask;
bn_zero(d, n);
d[n-1] = 1;
bn_to_mon(d, N, n);
for (i = 0; i < en; i++)
for (mask = 0x80; mask != 0; mask >>= 1) {
bn_mon_mul(t, d, d, N, n);
if ((e[i] & mask) != 0)
bn_mon_mul(d, t, a, N, n);
else
bn_copy(d, t, n);
}
}
void bn_mon_inv(u8 *d, u8 *a, u8 *N, u32 n)
{
u8 t[512], s[512];
bn_zero(s, n);
s[n-1] = 2;
bn_sub_1(t, N, s, n);
bn_mon_exp(d, a, N, n, t, n);
}

423
src/libkirk/ec.c Normal file
View file

@ -0,0 +1,423 @@
// Copyright 2007,2008,2010 Segher Boessenkool <segher@kernel.crashing.org>
// Licensed under the terms of the GNU GPL, version 2
// http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt
#include <string.h>
#include <stdio.h>
#include "kirk_engine.h"
struct point {
u8 x[20];
u8 y[20];
};
u8 ec_p[20];
u8 ec_a[20];
u8 ec_b[20];
u8 ec_N[21];
struct point ec_G; // mon
struct point ec_Q; // mon
u8 ec_k[21];
void hex_dump(char *str, u8 *buf, int size)
{
int i;
if(str)
printf("%s:", str);
for(i=0; i<size; i++){
if((i%32)==0){
printf("\n%4X:", i);
}
printf(" %02X", buf[i]);
}
printf("\n\n");
}
static void elt_copy(u8 *d, u8 *a)
{
memcpy(d, a, 20);
}
static void elt_zero(u8 *d)
{
memset(d, 0, 20);
}
static int elt_is_zero(u8 *d)
{
u32 i;
for (i = 0; i < 20; i++)
if (d[i] != 0)
return 0;
return 1;
}
static void elt_add(u8 *d, u8 *a, u8 *b)
{
bn_add(d, a, b, ec_p, 20);
}
static void elt_sub(u8 *d, u8 *a, u8 *b)
{
bn_sub(d, a, b, ec_p, 20);
}
static void elt_mul(u8 *d, u8 *a, u8 *b)
{
bn_mon_mul(d, a, b, ec_p, 20);
}
static void elt_square(u8 *d, u8 *a)
{
elt_mul(d, a, a);
}
static void elt_inv(u8 *d, u8 *a)
{
u8 s[20];
elt_copy(s, a);
bn_mon_inv(d, s, ec_p, 20);
}
static void point_to_mon(struct point *p)
{
bn_to_mon(p->x, ec_p, 20);
bn_to_mon(p->y, ec_p, 20);
}
static void point_from_mon(struct point *p)
{
bn_from_mon(p->x, ec_p, 20);
bn_from_mon(p->y, ec_p, 20);
}
#if 0
static int point_is_on_curve(u8 *p)
{
u8 s[20], t[20];
u8 *x, *y;
x = p;
y = p + 20;
elt_square(t, x);
elt_mul(s, t, x);
elt_mul(t, x, ec_a);
elt_add(s, s, t);
elt_add(s, s, ec_b);
elt_square(t, y);
elt_sub(s, s, t);
return elt_is_zero(s);
}
#endif
static void point_zero(struct point *p)
{
elt_zero(p->x);
elt_zero(p->y);
}
static int point_is_zero(struct point *p)
{
return elt_is_zero(p->x) && elt_is_zero(p->y);
}
static void point_double(struct point *r, struct point *p)
{
u8 s[20], t[20];
struct point pp;
u8 *px, *py, *rx, *ry;
pp = *p;
px = pp.x;
py = pp.y;
rx = r->x;
ry = r->y;
if (elt_is_zero(py)) {
point_zero(r);
return;
}
elt_square(t, px); // t = px*px
elt_add(s, t, t); // s = 2*px*px
elt_add(s, s, t); // s = 3*px*px
elt_add(s, s, ec_a); // s = 3*px*px + a
elt_add(t, py, py); // t = 2*py
elt_inv(t, t); // t = 1/(2*py)
elt_mul(s, s, t); // s = (3*px*px+a)/(2*py)
elt_square(rx, s); // rx = s*s
elt_add(t, px, px); // t = 2*px
elt_sub(rx, rx, t); // rx = s*s - 2*px
elt_sub(t, px, rx); // t = -(rx-px)
elt_mul(ry, s, t); // ry = -s*(rx-px)
elt_sub(ry, ry, py); // ry = -s*(rx-px) - py
}
static void point_add(struct point *r, struct point *p, struct point *q)
{
u8 s[20], t[20], u[20];
u8 *px, *py, *qx, *qy, *rx, *ry;
struct point pp, qq;
pp = *p;
qq = *q;
px = pp.x;
py = pp.y;
qx = qq.x;
qy = qq.y;
rx = r->x;
ry = r->y;
if (point_is_zero(&pp)) {
elt_copy(rx, qx);
elt_copy(ry, qy);
return;
}
if (point_is_zero(&qq)) {
elt_copy(rx, px);
elt_copy(ry, py);
return;
}
elt_sub(u, qx, px);
if (elt_is_zero(u)) {
elt_sub(u, qy, py);
if (elt_is_zero(u))
point_double(r, &pp);
else
point_zero(r);
return;
}
elt_inv(t, u); // t = 1/(qx-px)
elt_sub(u, qy, py); // u = qy-py
elt_mul(s, t, u); // s = (qy-py)/(qx-px)
elt_square(rx, s); // rx = s*s
elt_add(t, px, qx); // t = px+qx
elt_sub(rx, rx, t); // rx = s*s - (px+qx)
elt_sub(t, px, rx); // t = -(rx-px)
elt_mul(ry, s, t); // ry = -s*(rx-px)
elt_sub(ry, ry, py); // ry = -s*(rx-px) - py
}
static void point_mul(struct point *d, u8 *a, struct point *b)
{
u32 i;
u8 mask;
point_zero(d);
for (i = 0; i < 21; i++)
for (mask = 0x80; mask != 0; mask >>= 1) {
point_double(d, d);
if ((a[i] & mask) != 0)
point_add(d, d, b);
}
}
static void generate_ecdsa(u8 *outR, u8 *outS, u8 *k, u8 *hash)
{
u8 e[21];
u8 kk[21];
u8 m[21];
u8 R[21];
u8 S[21];
u8 minv[21];
struct point mG;
e[0] = 0;R[0] = 0;S[0] = 0;
memcpy(e + 1, hash, 20);
bn_reduce(e, ec_N, 21);
kirk_CMD14(m+1, 20);
m[0] = 0;
point_mul(&mG, m, &ec_G);
point_from_mon(&mG);
R[0] = 0;
elt_copy(R+1, mG.x);
bn_copy(kk, k, 21);
bn_reduce(kk, ec_N, 21);
bn_to_mon(m, ec_N, 21);
bn_to_mon(e, ec_N, 21);
bn_to_mon(R, ec_N, 21);
bn_to_mon(kk, ec_N, 21);
bn_mon_mul(S, R, kk, ec_N, 21);
bn_add(kk, S, e, ec_N, 21);
bn_mon_inv(minv, m, ec_N, 21);
bn_mon_mul(S, minv, kk, ec_N, 21);
bn_from_mon(R, ec_N, 21);
bn_from_mon(S, ec_N, 21);
memcpy(outR,R+1,0x20);
memcpy(outS,S+1,0x20);
}
static int check_ecdsa(struct point *Q, u8 *inR, u8 *inS, u8 *hash)
{
u8 Sinv[21];
u8 e[21], R[21], S[21];
u8 w1[21], w2[21];
struct point r1, r2;
u8 rr[21];
e[0] = 0;
memcpy(e + 1, hash, 20);
bn_reduce(e, ec_N, 21);
R[0] = 0;
memcpy(R + 1, inR, 20);
bn_reduce(R, ec_N, 21);
S[0] = 0;
memcpy(S + 1, inS, 20);
bn_reduce(S, ec_N, 21);
bn_to_mon(R, ec_N, 21);
bn_to_mon(S, ec_N, 21);
bn_to_mon(e, ec_N, 21);
// make Sinv = 1/S
bn_mon_inv(Sinv, S, ec_N, 21);
// w1 = m * Sinv
bn_mon_mul(w1, e, Sinv, ec_N, 21);
// w2 = r * Sinv
bn_mon_mul(w2, R, Sinv, ec_N, 21);
// mod N both
bn_from_mon(w1, ec_N, 21);
bn_from_mon(w2, ec_N, 21);
// r1 = m/s * G
point_mul(&r1, w1, &ec_G);
// r2 = r/s * P
point_mul(&r2, w2, Q);
//r1 = r1 + r2
point_add(&r1, &r1, &r2);
point_from_mon(&r1);
rr[0] = 0;
memcpy(rr + 1, r1.x, 20);
bn_reduce(rr, ec_N, 21);
bn_from_mon(R, ec_N, 21);
bn_from_mon(S, ec_N, 21);
return (bn_compare(rr, R, 21) == 0);
}
void ec_priv_to_pub(u8 *k, u8 *Q)
{
struct point ec_temp;
bn_to_mon(k, ec_N, 21);
point_mul(&ec_temp, k, &ec_G);
point_from_mon(&ec_temp);
memcpy(Q,ec_temp.x,20);
memcpy(Q+20,ec_temp.y,20);
}
void ec_pub_mult(u8 *k, u8 *Q)
{
struct point ec_temp;
point_mul(&ec_temp, k, &ec_Q);
point_from_mon(&ec_temp);
memcpy(Q,ec_temp.x,20);
memcpy(Q+20,ec_temp.y,20);
}
int ecdsa_set_curve(u8* p,u8* a,u8* b,u8* N,u8* Gx,u8* Gy)
{
memcpy(ec_p,p,20);
memcpy(ec_a,a,20);
memcpy(ec_b,b,20);
memcpy(ec_N,N,21);
bn_to_mon(ec_a, ec_p, 20);
bn_to_mon(ec_b, ec_p, 20);
memcpy(ec_G.x, Gx, 20);
memcpy(ec_G.y, Gy, 20);
point_to_mon(&ec_G);
return 0;
}
void ecdsa_set_pub(u8 *Q)
{
memcpy(ec_Q.x, Q, 20);
memcpy(ec_Q.y, Q+20, 20);
point_to_mon(&ec_Q);
}
void ecdsa_set_priv(u8 *ink)
{
u8 k[21];
k[0]=0;
memcpy(k+1,ink,20);
bn_reduce(k, ec_N, 21);
memcpy(ec_k, k, sizeof ec_k);
}
int ecdsa_verify(u8 *hash, u8 *R, u8 *S)
{
return check_ecdsa(&ec_Q, R, S, hash);
}
void ecdsa_sign(u8 *hash, u8 *R, u8 *S)
{
generate_ecdsa(R, S, ec_k, hash);
}
int point_is_on_curve(u8 *p)
{
u8 s[20], t[20];
u8 *x, *y;
x = p;
y = p + 20;
elt_square(t, x);
elt_mul(s, t, x);// s = x^3
elt_mul(t, x, ec_a);
elt_add(s, s, t); //s = x^3 + a *x
elt_add(s, s, ec_b);//s = x^3 + a *x + b
elt_square(t, y); //t = y^2
elt_sub(s, s, t); // is s - t = 0?
hex_dump("S", s, 20);
hex_dump("T", t,20);
return elt_is_zero(s);
}
void dump_ecc(void)
{
hex_dump("P", ec_p, 20);
hex_dump("a", ec_a, 20);
hex_dump("b", ec_b, 20);
hex_dump("N", ec_N, 21);
hex_dump("Gx", ec_G.x, 20);
hex_dump("Gy", ec_G.y, 20);
}

78
src/libkirk/key_vault.h Normal file
View file

@ -0,0 +1,78 @@
/*
Draan proudly presents:
With huge help from community:
coyotebean, Davee, hitchhikr, kgsws, liquidzigong, Mathieulh, Proxima, SilverSpring
******************** KIRK-ENGINE ********************
An Open-Source implementation of KIRK (PSP crypto engine) algorithms and keys.
Includes also additional routines for hash forging.
********************
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef KEY_VAULT
#define KEY_VAULT
// KIRK AES keys
static u8 kirk1_key[0x10] = {0x98, 0xC9, 0x40, 0x97, 0x5C, 0x1D, 0x10, 0xE8, 0x7F, 0xE6, 0x0E, 0xA3, 0xFD, 0x03, 0xA8, 0xBA};
static u8 kirk7_key02[0x10] = {0xB8, 0x13, 0xC3, 0x5E, 0xC6, 0x44, 0x41, 0xE3, 0xDC, 0x3C, 0x16, 0xF5, 0xB4, 0x5E, 0x64, 0x84};
static u8 kirk7_key03[0x10] = {0x98, 0x02, 0xC4, 0xE6, 0xEC, 0x9E, 0x9E, 0x2F, 0xFC, 0x63, 0x4C, 0xE4, 0x2F, 0xBB, 0x46, 0x68};
static u8 kirk7_key04[0x10] = {0x99, 0x24, 0x4C, 0xD2, 0x58, 0xF5, 0x1B, 0xCB, 0xB0, 0x61, 0x9C, 0xA7, 0x38, 0x30, 0x07, 0x5F};
static u8 kirk7_key05[0x10] = {0x02, 0x25, 0xD7, 0xBA, 0x63, 0xEC, 0xB9, 0x4A, 0x9D, 0x23, 0x76, 0x01, 0xB3, 0xF6, 0xAC, 0x17};
static u8 kirk7_key07[0x10] = {0x76, 0x36, 0x8B, 0x43, 0x8F, 0x77, 0xD8, 0x7E, 0xFE, 0x5F, 0xB6, 0x11, 0x59, 0x39, 0x88, 0x5C};
static u8 kirk7_key0C[0x10] = {0x84, 0x85, 0xC8, 0x48, 0x75, 0x08, 0x43, 0xBC, 0x9B, 0x9A, 0xEC, 0xA7, 0x9C, 0x7F, 0x60, 0x18};
static u8 kirk7_key0D[0x10] = {0xB5, 0xB1, 0x6E, 0xDE, 0x23, 0xA9, 0x7B, 0x0E, 0xA1, 0x7C, 0xDB, 0xA2, 0xDC, 0xDE, 0xC4, 0x6E};
static u8 kirk7_key0E[0x10] = {0xC8, 0x71, 0xFD, 0xB3, 0xBC, 0xC5, 0xD2, 0xF2, 0xE2, 0xD7, 0x72, 0x9D, 0xDF, 0x82, 0x68, 0x82};
static u8 kirk7_key0F[0x10] = {0x0A, 0xBB, 0x33, 0x6C, 0x96, 0xD4, 0xCD, 0xD8, 0xCB, 0x5F, 0x4B, 0xE0, 0xBA, 0xDB, 0x9E, 0x03};
static u8 kirk7_key10[0x10] = {0x32, 0x29, 0x5B, 0xD5, 0xEA, 0xF7, 0xA3, 0x42, 0x16, 0xC8, 0x8E, 0x48, 0xFF, 0x50, 0xD3, 0x71};
static u8 kirk7_key11[0x10] = {0x46, 0xF2, 0x5E, 0x8E, 0x4D, 0x2A, 0xA5, 0x40, 0x73, 0x0B, 0xC4, 0x6E, 0x47, 0xEE, 0x6F, 0x0A};
static u8 kirk7_key12[0x10] = {0x5D, 0xC7, 0x11, 0x39, 0xD0, 0x19, 0x38, 0xBC, 0x02, 0x7F, 0xDD, 0xDC, 0xB0, 0x83, 0x7D, 0x9D};
static u8 kirk7_key38[0x10] = {0x12, 0x46, 0x8D, 0x7E, 0x1C, 0x42, 0x20, 0x9B, 0xBA, 0x54, 0x26, 0x83, 0x5E, 0xB0, 0x33, 0x03};
static u8 kirk7_key39[0x10] = {0xC4, 0x3B, 0xB6, 0xD6, 0x53, 0xEE, 0x67, 0x49, 0x3E, 0xA9, 0x5F, 0xBC, 0x0C, 0xED, 0x6F, 0x8A};
static u8 kirk7_key3A[0x10] = {0x2C, 0xC3, 0xCF, 0x8C, 0x28, 0x78, 0xA5, 0xA6, 0x63, 0xE2, 0xAF, 0x2D, 0x71, 0x5E, 0x86, 0xBA};
static u8 kirk7_key44[0x10] = {0x7D, 0xF4, 0x92, 0x65, 0xE3, 0xFA, 0xD6, 0x78, 0xD6, 0xFE, 0x78, 0xAD, 0xBB, 0x3D, 0xFB, 0x63};
static u8 kirk7_key4B[0x10] = {0x0C, 0xFD, 0x67, 0x9A, 0xF9, 0xB4, 0x72, 0x4F, 0xD7, 0x8D, 0xD6, 0xE9, 0x96, 0x42, 0x28, 0x8B};
static u8 kirk7_key53[0x10] = {0xAF, 0xFE, 0x8E, 0xB1, 0x3D, 0xD1, 0x7E, 0xD8, 0x0A, 0x61, 0x24, 0x1C, 0x95, 0x92, 0x56, 0xB6};
static u8 kirk7_key57[0x10] = {0x1C, 0x9B, 0xC4, 0x90, 0xE3, 0x06, 0x64, 0x81, 0xFA, 0x59, 0xFD, 0xB6, 0x00, 0xBB, 0x28, 0x70};
static u8 kirk7_key5D[0x10] = {0x11, 0x5A, 0x5D, 0x20, 0xD5, 0x3A, 0x8D, 0xD3, 0x9C, 0xC5, 0xAF, 0x41, 0x0F, 0x0F, 0x18, 0x6F};
static u8 kirk7_key63[0x10] = {0x9C, 0x9B, 0x13, 0x72, 0xF8, 0xC6, 0x40, 0xCF, 0x1C, 0x62, 0xF5, 0xD5, 0x92, 0xDD, 0xB5, 0x82};
static u8 kirk7_key64[0x10] = {0x03, 0xB3, 0x02, 0xE8, 0x5F, 0xF3, 0x81, 0xB1, 0x3B, 0x8D, 0xAA, 0x2A, 0x90, 0xFF, 0x5E, 0x61};
static u8 kirk16_key[0x10] = {0x47, 0x5E, 0x09, 0xF4, 0xA2, 0x37, 0xDA, 0x9B, 0xEF, 0xFF, 0x3B, 0xC0, 0x77, 0x14, 0x3D, 0x8A};
/* ECC Curves for Kirk 1 and Kirk 0x11 */
// Common Curve paramters p and a
static u8 ec_p[0x14] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
static u8 ec_a[0x14] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC}; // mon
// Kirk 0xC,0xD,0x10,0x11,(likely 0x12)- Unique curve parameters for b, N, and base point G for Kirk 0xC,0xD,0x10,0x11,(likely 0x12) service
// Since public key is variable, it is not specified here
static u8 ec_b2[0x14] = {0xA6, 0x8B, 0xED, 0xC3, 0x34, 0x18, 0x02, 0x9C, 0x1D, 0x3C, 0xE3, 0x3B, 0x9A, 0x32, 0x1F, 0xCC, 0xBB, 0x9E, 0x0F, 0x0B};// mon
static u8 ec_N2[0x15] = {0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xB5, 0xAE, 0x3C, 0x52, 0x3E, 0x63, 0x94, 0x4F, 0x21, 0x27};
static u8 Gx2[0x14] = {0x12, 0x8E, 0xC4, 0x25, 0x64, 0x87, 0xFD, 0x8F, 0xDF, 0x64, 0xE2, 0x43, 0x7B, 0xC0, 0xA1, 0xF6, 0xD5, 0xAF, 0xDE, 0x2C };
static u8 Gy2[0x14] = {0x59, 0x58, 0x55, 0x7E, 0xB1, 0xDB, 0x00, 0x12, 0x60, 0x42, 0x55, 0x24, 0xDB, 0xC3, 0x79, 0xD5, 0xAC, 0x5F, 0x4A, 0xDF };
// KIRK 1 - Unique curve parameters for b, N, and base point G
// Since public key is hard coded, it is also included
static u8 ec_b1[0x14] = {0x65, 0xD1, 0x48, 0x8C, 0x03, 0x59, 0xE2, 0x34, 0xAD, 0xC9, 0x5B, 0xD3, 0x90, 0x80, 0x14, 0xBD, 0x91, 0xA5, 0x25, 0xF9};
static u8 ec_N1[0x15] = {0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x01, 0xB5, 0xC6, 0x17, 0xF2, 0x90, 0xEA, 0xE1, 0xDB, 0xAD, 0x8F};
static u8 Gx1[0x14] = {0x22, 0x59, 0xAC, 0xEE, 0x15, 0x48, 0x9C, 0xB0, 0x96, 0xA8, 0x82, 0xF0, 0xAE, 0x1C, 0xF9, 0xFD, 0x8E, 0xE5, 0xF8, 0xFA };
static u8 Gy1[0x14] = {0x60, 0x43, 0x58, 0x45, 0x6D, 0x0A, 0x1C, 0xB2, 0x90, 0x8D, 0xE9, 0x0F, 0x27, 0xD7, 0x5C, 0x82, 0xBE, 0xC1, 0x08, 0xC0 };
static u8 Px1[0x14] = {0xED, 0x9C, 0xE5, 0x82, 0x34, 0xE6, 0x1A, 0x53, 0xC6, 0x85, 0xD6, 0x4D, 0x51, 0xD0, 0x23, 0x6B, 0xC3, 0xB5, 0xD4, 0xB9 };
static u8 Py1[0x14] = {0x04, 0x9D, 0xF1, 0xA0, 0x75, 0xC0, 0xE0, 0x4F, 0xB3, 0x44, 0x85, 0x8B, 0x61, 0xB7, 0x9B, 0x69, 0xA6, 0x3D, 0x2C, 0x39 };
#endif

603
src/libkirk/kirk_engine.c Normal file
View file

@ -0,0 +1,603 @@
/*
Draan proudly presents:
With huge help from community:
coyotebean, Davee, hitchhikr, kgsws, liquidzigong, Mathieulh, Proxima, SilverSpring
******************** KIRK-ENGINE ********************
An Open-Source implementation of KIRK (PSP crypto engine) algorithms and keys.
Includes also additional routines for hash forging.
********************
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "kirk_engine.h"
#include "key_vault.h"
#include "aes.h"
#include "sha1.h"
// Internal variables
typedef struct kirk16_data
{
u8 fuseid[8];
u8 mesh[0x40];
} kirk16_data;
typedef struct header_keys
{
u8 AES[16];
u8 CMAC[16];
} header_keys;
u32 g_fuse90;
u32 g_fuse94;
AES_ctx aes_kirk1;
u8 PRNG_DATA[0x14];
char is_kirk_initialized;
// Internal functions
u8* kirk_4_7_get_key(int key_type)
{
switch(key_type)
{
case(0x02): return kirk7_key02; break;
case(0x03): return kirk7_key03; break;
case(0x04): return kirk7_key04; break;
case(0x05): return kirk7_key05; break;
case(0x07): return kirk7_key07; break;
case(0x0C): return kirk7_key0C; break;
case(0x0D): return kirk7_key0D; break;
case(0x0E): return kirk7_key0E; break;
case(0x0F): return kirk7_key0F; break;
case(0x10): return kirk7_key10; break;
case(0x11): return kirk7_key11; break;
case(0x12): return kirk7_key12; break;
case(0x38): return kirk7_key38; break;
case(0x39): return kirk7_key39; break;
case(0x3A): return kirk7_key3A; break;
case(0x44): return kirk7_key44; break;
case(0x4B): return kirk7_key4B; break;
case(0x53): return kirk7_key53; break;
case(0x57): return kirk7_key57; break;
case(0x5D): return kirk7_key5D; break;
case(0x63): return kirk7_key63; break;
case(0x64): return kirk7_key64; break;
default: return (u8*)KIRK_INVALID_SIZE; break;
}
}
void decrypt_kirk16_private(u8 *dA_out, u8 *dA_enc)
{
int i, k;
kirk16_data keydata;
u8 subkey_1[0x10], subkey_2[0x10];
rijndael_ctx aes_ctx;
keydata.fuseid[7] = g_fuse90 &0xFF;
keydata.fuseid[6] = (g_fuse90>>8) &0xFF;
keydata.fuseid[5] = (g_fuse90>>16) &0xFF;
keydata.fuseid[4] = (g_fuse90>>24) &0xFF;
keydata.fuseid[3] = g_fuse94 &0xFF;
keydata.fuseid[2] = (g_fuse94>>8) &0xFF;
keydata.fuseid[1] = (g_fuse94>>16) &0xFF;
keydata.fuseid[0] = (g_fuse94>>24) &0xFF;
/* set encryption key */
rijndael_set_key(&aes_ctx, kirk16_key, 128);
/* set the subkeys */
for (i = 0; i < 0x10; i++)
{
/* set to the fuseid */
subkey_2[i] = subkey_1[i] = keydata.fuseid[i % 8];
}
/* do aes crypto */
for (i = 0; i < 3; i++)
{
/* encrypt + decrypt */
rijndael_encrypt(&aes_ctx, subkey_1, subkey_1);
rijndael_decrypt(&aes_ctx, subkey_2, subkey_2);
}
/* set new key */
rijndael_set_key(&aes_ctx, subkey_1, 128);
/* now lets make the key mesh */
for (i = 0; i < 3; i++)
{
/* do encryption in group of 3 */
for (k = 0; k < 3; k++)
{
/* crypto */
rijndael_encrypt(&aes_ctx, subkey_2, subkey_2);
}
/* copy to out block */
memcpy(&keydata.mesh[i * 0x10], subkey_2, 0x10);
}
/* set the key to the mesh */
rijndael_set_key(&aes_ctx, &keydata.mesh[0x20], 128);
/* do the encryption routines for the aes key */
for (i = 0; i < 2; i++)
{
/* encrypt the data */
rijndael_encrypt(&aes_ctx, &keydata.mesh[0x10], &keydata.mesh[0x10]);
}
/* set the key to that mesh shit */
rijndael_set_key(&aes_ctx, &keydata.mesh[0x10], 128);
/* cbc decrypt the dA */
AES_cbc_decrypt((AES_ctx *)&aes_ctx, dA_enc, dA_out, 0x20);
}
void encrypt_kirk16_private(u8 *dA_out, u8 *dA_dec)
{
int i, k;
kirk16_data keydata;
u8 subkey_1[0x10], subkey_2[0x10];
rijndael_ctx aes_ctx;
keydata.fuseid[7] = g_fuse90 &0xFF;
keydata.fuseid[6] = (g_fuse90>>8) &0xFF;
keydata.fuseid[5] = (g_fuse90>>16) &0xFF;
keydata.fuseid[4] = (g_fuse90>>24) &0xFF;
keydata.fuseid[3] = g_fuse94 &0xFF;
keydata.fuseid[2] = (g_fuse94>>8) &0xFF;
keydata.fuseid[1] = (g_fuse94>>16) &0xFF;
keydata.fuseid[0] = (g_fuse94>>24) &0xFF;
/* set encryption key */
rijndael_set_key(&aes_ctx, kirk16_key, 128);
/* set the subkeys */
for (i = 0; i < 0x10; i++)
{
/* set to the fuseid */
subkey_2[i] = subkey_1[i] = keydata.fuseid[i % 8];
}
/* do aes crypto */
for (i = 0; i < 3; i++)
{
/* encrypt + decrypt */
rijndael_encrypt(&aes_ctx, subkey_1, subkey_1);
rijndael_decrypt(&aes_ctx, subkey_2, subkey_2);
}
/* set new key */
rijndael_set_key(&aes_ctx, subkey_1, 128);
/* now lets make the key mesh */
for (i = 0; i < 3; i++)
{
/* do encryption in group of 3 */
for (k = 0; k < 3; k++)
{
/* crypto */
rijndael_encrypt(&aes_ctx, subkey_2, subkey_2);
}
/* copy to out block */
memcpy(&keydata.mesh[i * 0x10], subkey_2, 0x10);
}
/* set the key to the mesh */
rijndael_set_key(&aes_ctx, &keydata.mesh[0x20], 128);
/* do the encryption routines for the aes key */
for (i = 0; i < 2; i++)
{
/* encrypt the data */
rijndael_encrypt(&aes_ctx, &keydata.mesh[0x10], &keydata.mesh[0x10]);
}
/* set the key to that mesh shit */
rijndael_set_key(&aes_ctx, &keydata.mesh[0x10], 128);
/* cbc encrypt the dA */
AES_cbc_encrypt((AES_ctx *)&aes_ctx, dA_dec, dA_out, 0x20);
}
// KIRK commands
int kirk_init()
{
return kirk_init2((u8*)"Lazy Dev should have initialized!", 33, 0xBABEF00D, 0xDEADBEEF);
}
int kirk_init2(u8 * rnd_seed __attribute__((unused)), u32 seed_size, u32 fuseid_90, u32 fuseid_94)
{
u8 temp[0x104];
KIRK_SHA1_HEADER *header = (KIRK_SHA1_HEADER *) temp;
// Another randomly selected data for a "key" to add to each randomization
u8 key[0x10] = {0x07, 0xAB, 0xEF, 0xF8, 0x96, 0x8C, 0xF3, 0xD6, 0x14, 0xE0, 0xEB, 0xB2, 0x9D, 0x8B, 0x4E, 0x74};
u32 curtime;
//Set PRNG_DATA initially, otherwise use what ever uninitialized data is in the buffer
if(seed_size > 0) {
u8 * seedbuf;
KIRK_SHA1_HEADER *seedheader;;
seedbuf=(u8*)malloc(seed_size+4);
seedheader= (KIRK_SHA1_HEADER *) seedbuf;
seedheader->data_size = seed_size;
kirk_CMD11(PRNG_DATA, seedbuf, seed_size+4);
free(seedbuf);
}
memcpy(temp+4, PRNG_DATA,0x14);
// This uses the standard C time function for portability.
curtime = (u32)time(0);
temp[0x18] = curtime &0xFF;
temp[0x19] = (curtime>>8) &0xFF;
temp[0x1A] = (curtime>>16) &0xFF;
temp[0x1B] = (curtime>>24) &0xFF;
memcpy(&temp[0x1C], key, 0x10);
// This leaves the remainder of the 0x100 bytes in temp to whatever remains on the stack
// in an uninitialized state. This should add unpredicableness to the results as well
header->data_size = 0x100;
kirk_CMD11(PRNG_DATA, temp, 0x104);
//Set Fuse ID
g_fuse90 = fuseid_90;
g_fuse94 = fuseid_94;
// Set KIRK1 main key
AES_set_key(&aes_kirk1, kirk1_key, 128);
is_kirk_initialized = 1;
return 0;
}
int kirk_CMD0(u8* outbuff, u8* inbuff, int size, int generate_trash)
{
KIRK_CMD1_HEADER* header = (KIRK_CMD1_HEADER*)outbuff;
header_keys *keys = (header_keys *)outbuff; //0-15 AES key, 16-31 CMAC key
int chk_size;
AES_ctx k1;
AES_ctx cmac_key;
u8 cmac_header_hash[16];
u8 cmac_data_hash[16];
if (is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED;
memcpy(outbuff, inbuff, size);
if (header->mode != KIRK_MODE_CMD1) return KIRK_INVALID_MODE;
// FILL PREDATA WITH RANDOM DATA
if (generate_trash) kirk_CMD14(outbuff+sizeof(KIRK_CMD1_HEADER), header->data_offset);
// Make sure data is 16 aligned
chk_size = header->data_size;
if (chk_size % 16) chk_size += 16 - (chk_size % 16);
// ENCRYPT DATA
AES_set_key(&k1, keys->AES, 128);
AES_cbc_encrypt(&k1, inbuff+sizeof(KIRK_CMD1_HEADER)+header->data_offset, (u8*)outbuff+sizeof(KIRK_CMD1_HEADER)+header->data_offset, chk_size);
// CMAC HASHES
AES_set_key(&cmac_key, keys->CMAC, 128);
AES_CMAC(&cmac_key, outbuff+0x60, 0x30, cmac_header_hash);
AES_CMAC(&cmac_key, outbuff+0x60, 0x30 + chk_size + header->data_offset, cmac_data_hash);
memcpy(header->CMAC_header_hash, cmac_header_hash, 16);
memcpy(header->CMAC_data_hash, cmac_data_hash, 16);
// ENCRYPT KEYS
AES_cbc_encrypt(&aes_kirk1, inbuff, outbuff, 16*2);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD1(u8* outbuff, u8* inbuff, int size)
{
KIRK_CMD1_HEADER* header = (KIRK_CMD1_HEADER*)inbuff;
header_keys keys; //0-15 AES key, 16-31 CMAC key
AES_ctx k1;
if (size < 0x90) return KIRK_INVALID_SIZE;
if (is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED;
if (header->mode != KIRK_MODE_CMD1) return KIRK_INVALID_MODE;
AES_cbc_decrypt(&aes_kirk1, inbuff, (u8*)&keys, 16*2); //decrypt AES & CMAC key to temp buffer
if(header->ecdsa_hash == 1)
{
SHA_CTX sha;
KIRK_CMD1_ECDSA_HEADER* eheader = (KIRK_CMD1_ECDSA_HEADER*) inbuff;
u8 kirk1_pub[40];
u8 header_hash[20];u8 data_hash[20];
ecdsa_set_curve(ec_p,ec_a,ec_b1,ec_N1,Gx1,Gy1);
memcpy(kirk1_pub,Px1,20);
memcpy(kirk1_pub+20,Py1,20);
ecdsa_set_pub(kirk1_pub);
//Hash the Header
SHAInit(&sha);
SHAUpdate(&sha, (u8*)eheader+0x60, 0x30);
SHAFinal(header_hash, &sha);
if(!ecdsa_verify(header_hash,eheader->header_sig_r,eheader->header_sig_s)) {
return KIRK_HEADER_HASH_INVALID;
}
SHAInit(&sha);
SHAUpdate(&sha, (u8*)eheader+0x60, size-0x60);
SHAFinal(data_hash, &sha);
if(!ecdsa_verify(data_hash,eheader->data_sig_r,eheader->data_sig_s)) {
return KIRK_DATA_HASH_INVALID;
}
} else {
int ret = kirk_CMD10(inbuff, size);
if(ret != KIRK_OPERATION_SUCCESS) return ret;
}
AES_set_key(&k1, keys.AES, 128);
AES_cbc_decrypt(&k1, inbuff+sizeof(KIRK_CMD1_HEADER)+header->data_offset, outbuff, header->data_size);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD1_ex(u8* outbuff, u8* inbuff, int size, KIRK_CMD1_HEADER* header)
{
u8* buffer = (u8*)malloc(size);
int ret;
memcpy(buffer, header, sizeof(KIRK_CMD1_HEADER));
memcpy(buffer+sizeof(KIRK_CMD1_HEADER), inbuff, header->data_size);
ret = kirk_CMD1(outbuff, buffer, size);
free(buffer);
return ret;
}
int kirk_CMD4(u8* outbuff, u8* inbuff, int size)
{
KIRK_AES128CBC_HEADER *header = (KIRK_AES128CBC_HEADER*)inbuff;
u8* key;
AES_ctx aesKey;
if (is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED;
if (header->mode != KIRK_MODE_ENCRYPT_CBC) return KIRK_INVALID_MODE;
if (header->data_size == 0) return KIRK_DATA_SIZE_ZERO;
key = kirk_4_7_get_key(header->keyseed);
if (key == (u8*)KIRK_INVALID_SIZE) return KIRK_INVALID_SIZE;
// Set the key
AES_set_key(&aesKey, key, 128);
AES_cbc_encrypt(&aesKey, inbuff+sizeof(KIRK_AES128CBC_HEADER), outbuff+sizeof(KIRK_AES128CBC_HEADER), size);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD7(u8* outbuff, u8* inbuff, int size)
{
KIRK_AES128CBC_HEADER *header = (KIRK_AES128CBC_HEADER*)inbuff;
u8* key;
AES_ctx aesKey;
if (is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED;
if (header->mode != KIRK_MODE_DECRYPT_CBC) return KIRK_INVALID_MODE;
if (header->data_size == 0) return KIRK_DATA_SIZE_ZERO;
key = kirk_4_7_get_key(header->keyseed);
if (key == (u8*)KIRK_INVALID_SIZE) return KIRK_INVALID_SIZE;
// Set the key
AES_set_key(&aesKey, key, 128);
AES_cbc_decrypt(&aesKey, inbuff+sizeof(KIRK_AES128CBC_HEADER), outbuff, size);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD10(u8* inbuff, int insize __attribute__((unused)))
{
KIRK_CMD1_HEADER* header = (KIRK_CMD1_HEADER*)inbuff;
header_keys keys; //0-15 AES key, 16-31 CMAC key
u8 cmac_header_hash[16];
u8 cmac_data_hash[16];
AES_ctx cmac_key;
int chk_size;
if (is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED;
if (!(header->mode == KIRK_MODE_CMD1 || header->mode == KIRK_MODE_CMD2 || header->mode == KIRK_MODE_CMD3)) return KIRK_INVALID_MODE;
if (header->data_size == 0) return KIRK_DATA_SIZE_ZERO;
if (header->mode == KIRK_MODE_CMD1)
{
AES_cbc_decrypt(&aes_kirk1, inbuff, (u8*)&keys, 32); //decrypt AES & CMAC key to temp buffer
AES_set_key(&cmac_key, keys.CMAC, 128);
AES_CMAC(&cmac_key, inbuff+0x60, 0x30, cmac_header_hash);
// Make sure data is 16 aligned
chk_size = header->data_size;
if(chk_size % 16) chk_size += 16 - (chk_size % 16);
AES_CMAC(&cmac_key, inbuff+0x60, 0x30 + chk_size + header->data_offset, cmac_data_hash);
if(memcmp(cmac_header_hash, header->CMAC_header_hash, 16) != 0) return KIRK_HEADER_HASH_INVALID;
if(memcmp(cmac_data_hash, header->CMAC_data_hash, 16) != 0) return KIRK_DATA_HASH_INVALID;
return KIRK_OPERATION_SUCCESS;
}
return KIRK_SIG_CHECK_INVALID; //Checks for cmd 2 & 3 not included right now
}
int kirk_CMD11(u8* outbuff, u8* inbuff, int size)
{
KIRK_SHA1_HEADER *header = (KIRK_SHA1_HEADER *)inbuff;
SHA_CTX sha;
if (is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED;
if (header->data_size == 0 || size == 0) return KIRK_DATA_SIZE_ZERO;
SHAInit(&sha);
SHAUpdate(&sha, inbuff+sizeof(KIRK_SHA1_HEADER), header->data_size);
SHAFinal(outbuff, &sha);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD12(u8 * outbuff, int outsize)
{
u8 k[0x15];
KIRK_CMD12_BUFFER * keypair = (KIRK_CMD12_BUFFER *) outbuff;
if (outsize != 0x3C) return KIRK_INVALID_SIZE;
ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2);
k[0] = 0;
kirk_CMD14(k+1,0x14);
ec_priv_to_pub(k, (u8*)keypair->public_key.x);
memcpy(keypair->private_key,k+1,0x14);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD13(u8 * outbuff, int outsize,u8 * inbuff, int insize)
{
u8 k[0x15];
KIRK_CMD13_BUFFER * pointmult = (KIRK_CMD13_BUFFER *) inbuff;
k[0]=0;
if (outsize != 0x28) return KIRK_INVALID_SIZE;
if (insize != 0x3C) return KIRK_INVALID_SIZE;
ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2);
ecdsa_set_pub((u8*)pointmult->public_key.x);
memcpy(k+1,pointmult->multiplier,0x14);
ec_pub_mult(k, outbuff);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD14(u8 * outbuff, int outsize)
{
u8 temp[0x104];
KIRK_SHA1_HEADER *header = (KIRK_SHA1_HEADER *) temp;
// Some randomly selected data for a "key" to add to each randomization
u8 key[0x10] = { 0xA7, 0x2E, 0x4C, 0xB6, 0xC3, 0x34, 0xDF, 0x85, 0x70, 0x01, 0x49, 0xFC, 0xC0, 0x87, 0xC4, 0x77 };
u32 curtime;
if(outsize <=0) return KIRK_OPERATION_SUCCESS;
memcpy(temp+4, PRNG_DATA,0x14);
// This uses the standard C time function for portability.
curtime=(u32)time(0);
temp[0x18] = curtime &0xFF;
temp[0x19] = (curtime>>8) &0xFF;
temp[0x1A] = (curtime>>16) &0xFF;
temp[0x1B] = (curtime>>24) &0xFF;
memcpy(&temp[0x1C], key, 0x10);
// This leaves the remainder of the 0x100 bytes in temp to whatever remains on the stack
// in an uninitialized state. This should add unpredicableness to the results as well
header->data_size=0x100;
kirk_CMD11(PRNG_DATA, temp, 0x104);
while(outsize)
{
int blockrem = outsize %0x14;
int block = outsize /0x14;
if(block)
{
memcpy(outbuff, PRNG_DATA, 0x14);
outbuff += 0x14;
outsize -= 0x14;
kirk_CMD14(outbuff, outsize);
} else {
if(blockrem)
{
memcpy(outbuff, PRNG_DATA, blockrem);
outsize -= blockrem;
}
}
}
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD16(u8 * outbuff, int outsize, u8 * inbuff, int insize)
{
u8 dec_private[0x20];
KIRK_CMD16_BUFFER * signbuf = (KIRK_CMD16_BUFFER *) inbuff;
ECDSA_SIG * sig = (ECDSA_SIG *) outbuff;
if (insize != 0x34) return KIRK_INVALID_SIZE;
if (outsize != 0x28) return KIRK_INVALID_SIZE;
decrypt_kirk16_private(dec_private,signbuf->enc_private);
// Clear out the padding for safety
memset(&dec_private[0x14], 0, 0xC);
ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2);
ecdsa_set_priv(dec_private);
ecdsa_sign(signbuf->message_hash,sig->r, sig->s);
return KIRK_OPERATION_SUCCESS;
}
int kirk_CMD17(u8 * inbuff, int insize)
{
KIRK_CMD17_BUFFER * sig = (KIRK_CMD17_BUFFER *) inbuff;
if (insize != 0x64) return KIRK_INVALID_SIZE;
ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2);
ecdsa_set_pub(sig->public_key.x);
if (ecdsa_verify(sig->message_hash,sig->signature.r,sig->signature.s)) {
return KIRK_OPERATION_SUCCESS;
} else {
return KIRK_SIG_CHECK_INVALID;
}
}
// SCE functions
int sceUtilsBufferCopyWithRange(u8* outbuff, int outsize, u8* inbuff, int insize, int cmd)
{
switch(cmd)
{
case KIRK_CMD_DECRYPT_PRIVATE: return kirk_CMD1(outbuff, inbuff, insize); break;
case KIRK_CMD_ENCRYPT_IV_0: return kirk_CMD4(outbuff, inbuff, insize); break;
case KIRK_CMD_DECRYPT_IV_0: return kirk_CMD7(outbuff, inbuff, insize); break;
case KIRK_CMD_PRIV_SIGN_CHECK: return kirk_CMD10(inbuff, insize); break;
case KIRK_CMD_SHA1_HASH: return kirk_CMD11(outbuff, inbuff, insize); break;
case KIRK_CMD_ECDSA_GEN_KEYS: return kirk_CMD12(outbuff,outsize); break;
case KIRK_CMD_ECDSA_MULTIPLY_POINT: return kirk_CMD13(outbuff,outsize, inbuff, insize); break;
case KIRK_CMD_PRNG: return kirk_CMD14(outbuff,outsize); break;
case KIRK_CMD_ECDSA_SIGN: return kirk_CMD16(outbuff, outsize, inbuff, insize); break;
case KIRK_CMD_ECDSA_VERIFY: return kirk_CMD17(inbuff, insize); break;
}
return -1;
}

245
src/libkirk/kirk_engine.h Normal file
View file

@ -0,0 +1,245 @@
/*
Draan proudly presents:
With huge help from community:
coyotebean, Davee, hitchhikr, kgsws, liquidzigong, Mathieulh, Proxima, SilverSpring
******************** KIRK-ENGINE ********************
An Open-Source implementation of KIRK (PSP crypto engine) algorithms and keys.
Includes also additional routines for hash forging.
********************
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef KIRK_ENGINE
#define KIRK_ENGINE
typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
// Macros
#define round_up(x,n) (-(-(x) & -(n)))
#define array_size(x) (sizeof(x) / sizeof(*(x)))
// KIRK return values
#define KIRK_OPERATION_SUCCESS 0
#define KIRK_NOT_ENABLED 1
#define KIRK_INVALID_MODE 2
#define KIRK_HEADER_HASH_INVALID 3
#define KIRK_DATA_HASH_INVALID 4
#define KIRK_SIG_CHECK_INVALID 5
#define KIRK_UNK_1 6
#define KIRK_UNK_2 7
#define KIRK_UNK_3 8
#define KIRK_UNK_4 9
#define KIRK_UNK_5 0xA
#define KIRK_UNK_6 0xB
#define KIRK_NOT_INITIALIZED 0xC
#define KIRK_INVALID_OPERATION 0xD
#define KIRK_INVALID_SEED_CODE 0xE
#define KIRK_INVALID_SIZE 0xF
#define KIRK_DATA_SIZE_ZERO 0x10
// sceUtilsBufferCopyWithRange modes
#define KIRK_CMD_DECRYPT_PRIVATE 1
#define KIRK_CMD_2 2
#define KIRK_CMD_3 3
#define KIRK_CMD_ENCRYPT_IV_0 4
#define KIRK_CMD_ENCRYPT_IV_FUSE 5
#define KIRK_CMD_ENCRYPT_IV_USER 6
#define KIRK_CMD_DECRYPT_IV_0 7
#define KIRK_CMD_DECRYPT_IV_FUSE 8
#define KIRK_CMD_DECRYPT_IV_USER 9
#define KIRK_CMD_PRIV_SIGN_CHECK 10
#define KIRK_CMD_SHA1_HASH 11
#define KIRK_CMD_ECDSA_GEN_KEYS 12
#define KIRK_CMD_ECDSA_MULTIPLY_POINT 13
#define KIRK_CMD_PRNG 14
#define KIRK_CMD_15 15
#define KIRK_CMD_ECDSA_SIGN 16
#define KIRK_CMD_ECDSA_VERIFY 17
// KIRK header modes
#define KIRK_MODE_CMD1 1
#define KIRK_MODE_CMD2 2
#define KIRK_MODE_CMD3 3
#define KIRK_MODE_ENCRYPT_CBC 4
#define KIRK_MODE_DECRYPT_CBC 5
// sceUtilsBufferCopyWithRange errors
#define SUBCWR_NOT_16_ALGINED 0x90A
#define SUBCWR_HEADER_HASH_INVALID 0x920
#define SUBCWR_BUFFER_TOO_SMALL 0x1000
// Structs
typedef struct
{
int mode;
int unk_4;
int unk_8;
int keyseed;
int data_size;
} KIRK_AES128CBC_HEADER;
typedef struct
{
u8 AES_key[16];
u8 CMAC_key[16];
u8 CMAC_header_hash[16];
u8 CMAC_data_hash[16];
u8 unused[32];
u32 mode;
u8 ecdsa_hash;
u8 unk3[11];
u32 data_size;
u32 data_offset;
u8 unk4[8];
u8 unk5[16];
} KIRK_CMD1_HEADER;
typedef struct
{
u8 AES_key[16];
u8 header_sig_r[20];
u8 header_sig_s[20];
u8 data_sig_r[20];
u8 data_sig_s[20];
u32 mode;
u8 ecdsa_hash;
u8 unk3[11];
u32 data_size;
u32 data_offset;
u8 unk4[8];
u8 unk5[16];
} KIRK_CMD1_ECDSA_HEADER;
typedef struct
{
u8 r[0x14];
u8 s[0x14];
} ECDSA_SIG;
typedef struct
{
u8 x[0x14];
u8 y[0x14];
} ECDSA_POINT;
typedef struct
{
u32 data_size;
} KIRK_SHA1_HEADER;
typedef struct
{
u8 private_key[0x14];
ECDSA_POINT public_key;
} KIRK_CMD12_BUFFER;
typedef struct
{
u8 multiplier[0x14];
ECDSA_POINT public_key;
} KIRK_CMD13_BUFFER;
typedef struct
{
u8 enc_private[0x20];
u8 message_hash[0x14];
} KIRK_CMD16_BUFFER;
typedef struct
{
ECDSA_POINT public_key;
u8 message_hash[0x14];
ECDSA_SIG signature;
} KIRK_CMD17_BUFFER;
// KIRK commands
/*
// Private Sig + Cipher
0x01: Super-Duper decryption (no inverse)
0x02: Encrypt Operation (inverse of 0x03)
0x03: Decrypt Operation (inverse of 0x02)
// Cipher
0x04: Encrypt Operation (inverse of 0x07) (IV=0)
0x05: Encrypt Operation (inverse of 0x08) (IV=FuseID)
0x06: Encrypt Operation (inverse of 0x09) (IV=UserDefined)
0x07: Decrypt Operation (inverse of 0x04)
0x08: Decrypt Operation (inverse of 0x05)
0x09: Decrypt Operation (inverse of 0x06)
// Sig Gens
0x0A: Private Signature Check (checks for private SCE sig)
0x0B: SHA1 Hash
0x0C: Mul1
0x0D: Mul2
0x0E: Random Number Gen
0x0F: (absolutely no idea could be KIRK initialization)
0x10: Signature Gen
// Sig Checks
0x11: Signature Check (checks for generated sigs)
0x12: Certificate Check (idstorage signatures)
*/
int kirk_init();
int kirk_init2(u8 *, u32, u32, u32);
int kirk_CMD0(u8* outbuff, u8* inbuff, int size, int generate_trash);
int kirk_CMD1(u8* outbuff, u8* inbuff, int size);
int kirk_CMD1_ex(u8* outbuff, u8* inbuff, int size, KIRK_CMD1_HEADER* header);
int kirk_CMD4(u8* outbuff, u8* inbuff, int size);
int kirk_CMD7(u8* outbuff, u8* inbuff, int size);
int kirk_CMD10(u8* inbuff, int insize);
int kirk_CMD11(u8* outbuff, u8* inbuff, int size);
int kirk_CMD12(u8* outbuff, int outsize);
int kirk_CMD13(u8* outbuff, int outsize,u8* inbuff, int insize);
int kirk_CMD14(u8* outbuff, int outsize);
int kirk_CMD16(u8* outbuff, int outsize,u8* inbuff, int insize);
int kirk_CMD17(u8* inbuff, int insize);
// Internal functions
u8* kirk_4_7_get_key(int key_type);
void decrypt_kirk16_private(u8 *dA_out, u8 *dA_enc);
void encrypt_kirk16_private(u8 *dA_out, u8 *dA_dec);
// SCE functions
int sceUtilsSetFuseID(u8*fuse);
int sceUtilsBufferCopyWithRange(u8* outbuff, int outsize, u8* inbuff, int insize, int cmd);
// Prototypes for the Elliptic Curve and Big Number functions
int ecdsa_get_params(u32 type, u8 *p, u8 *a, u8 *b, u8 *N, u8 *Gx, u8 *Gy);
int ecdsa_set_curve(u8* p,u8* a,u8* b,u8* N,u8* Gx,u8* Gy);
void ecdsa_set_pub(u8 *Q);
void ecdsa_set_priv(u8 *k);
int ecdsa_verify(u8 *hash, u8 *R, u8 *S);
void ecdsa_sign(u8 *hash, u8 *R, u8 *S);
void ec_priv_to_pub(u8 *k, u8 *Q);
void ec_pub_mult(u8 *k, u8 *Q);
void bn_copy(u8 *d, u8 *a, u32 n);
int bn_compare(u8 *a, u8 *b, u32 n);
void bn_reduce(u8 *d, u8 *N, u32 n);
void bn_add(u8 *d, u8 *a, u8 *b, u8 *N, u32 n);
void bn_sub(u8 *d, u8 *a, u8 *b, u8 *N, u32 n);
void bn_to_mon(u8 *d, u8 *N, u32 n);
void bn_from_mon(u8 *d, u8 *N, u32 n);
void bn_mon_mul(u8 *d, u8 *a, u8 *b, u8 *N, u32 n);
void bn_mon_inv(u8 *d, u8 *a, u8 *N, u32 n);
void hex_dump(char *str, u8 *buf, int size);
#endif

148
src/libkirk/psp_headers.h Normal file
View file

@ -0,0 +1,148 @@
// Copyright (C) 2013 tpu
// Copyright (C) 2015 Hykem <hykem@hotmail.com>
// Licensed under the terms of the GNU GPL, version 3
// http://www.gnu.org/licenses/gpl-3.0.txt
/* Values for p_type. */
#define PT_LOAD 1 /* Loadable segment. */
/* Values for p_flags. */
#define PF_X 0x1 /* Executable. */
#define PF_W 0x2 /* Writable. */
#define PF_R 0x4 /* Readable. */
#define PF_RW (PF_R|PF_W)
typedef struct
{
u32 e_magic;
u8 e_class;
u8 e_data;
u8 e_idver;
u8 e_pad[9];
u16 e_type;
u16 e_machine;
u32 e_version;
u32 e_entry;
u32 e_phoff;
u32 e_shoff;
u32 e_flags;
u16 e_ehsize;
u16 e_phentsize;
u16 e_phnum;
u16 e_shentsize;
u16 e_shnum;
u16 e_shstrndx;
} __attribute__((packed)) Elf32_Ehdr;
typedef struct
{
u32 p_type;
u32 p_offset;
u32 p_vaddr;
u32 p_paddr;
u32 p_filesz;
u32 p_memsz;
u32 p_flags;
u32 p_align;
} __attribute__((packed)) Elf32_Phdr;
typedef struct
{
u32 sh_name;
u32 sh_type;
u32 sh_flags;
u32 sh_addr;
u32 sh_offset;
u32 sh_size;
u32 sh_link;
u32 sh_info;
u32 sh_addralign;
u32 sh_entsize;
} __attribute__((packed)) Elf32_Shdr;
typedef struct {
u32 r_offset;
u32 r_info; /* sym, type: ELF32_R_... */
} Elf32_Rel;
typedef struct {
u16 modattribute;
u8 modversion[2]; /* minor, major, etc... */
char modname[28];
void *gp_value;
void *ent_top;
void *ent_end;
void *stub_top;
void *stub_end;
} SceModuleInfo;
typedef struct
{
u32 signature; //0
u16 mod_attribute; //4
u16 comp_attribute; //6 compress method:
// 0x0001=PRX Compress
// 0x0002=ELF Packed
// 0x0008=GZIP overlap
// 0x0200=KL4E(if not set, GZIP)
u8 module_ver_lo; //8
u8 module_ver_hi; //9
char modname[28]; //0xA
u8 mod_version; //0x26
u8 nsegments; //0x27
u32 elf_size; //0x28
u32 psp_size; //0x2C
u32 boot_entry; //0x30
u32 modinfo_offset; //0x34
int bss_size; //0x38
u16 seg_align[4]; //0x3C
u32 seg_address[4]; //0x44
int seg_size[4]; //0x54
u32 reserved[5]; //0x64
u32 devkit_version; //0x78
u8 decrypt_mode; //0x7C
u8 padding; //0x7D
u16 overlap_size; //0x7E
u8 key_data[0x30]; //0x80
u32 comp_size; //0xB0 kirk data_size
int _80; //0xB4 kirk data_offset
u32 unk_B8; //0xB8
u32 unk_BC; //0xBC
u8 key_data2[0x10]; //0xC0
u32 tag; //0xD0
u8 scheck[0x58]; //0xD4
u8 sha1_hash[0x14]; //0x12C
u8 key_data4[0x10]; //0x140
} __attribute__((packed)) PSP_Header2; //0x150
typedef struct
{
u32 signature; // 0
u16 attribute;
u8 module_ver_lo;
u8 module_ver_hi;
char modname[28];
u8 version; // 26
u8 nsegments; // 27
int elf_size; // 28
int psp_size; // 2C
u32 entry; // 30
u32 modinfo_offset; // 34
int bss_size; // 38
u16 seg_align[4]; // 3C
u32 seg_address[4]; // 44
int seg_size[4]; // 54
u32 reserved[5]; // 64
u32 devkitversion; // 78
u32 decrypt_mode; // 7C
u8 key_data0[0x30]; // 80
int comp_size; // B0
int _80; // B4
int reserved2[2]; // B8
u8 key_data1[0x10]; // C0
u32 tag; // D0
u8 scheck[0x58]; // D4
u32 key_data2; // 12C
u32 oe_tag; // 130
u8 key_data3[0x1C]; // 134
} __attribute__((packed)) PSP_Header;

389
src/libkirk/sha1.c Normal file
View file

@ -0,0 +1,389 @@
/* sha1.c : Implementation of the Secure Hash Algorithm */
/* SHA: NIST's Secure Hash Algorithm */
/* This version written November 2000 by David Ireland of
DI Management Services Pty Limited <code@di-mgt.com.au>
Adapted from code in the Python Cryptography Toolkit,
version 1.0.0 by A.M. Kuchling 1995.
*/
/* AM Kuchling's posting:-
Based on SHA code originally posted to sci.crypt by Peter Gutmann
in message <30ajo5$oe8@ccu2.auckland.ac.nz>.
Modified to test for endianness on creation of SHA objects by AMK.
Also, the original specification of SHA was found to have a weakness
by NSA/NIST. This code implements the fixed version of SHA.
*/
/* Here's the first paragraph of Peter Gutmann's posting:
The following is my SHA (FIPS 180) code updated to allow use of the "fixed"
SHA, thanks to Jim Gillogly and an anonymous contributor for the information on
what's changed in the new version. The fix is a simple change which involves
adding a single rotate in the initial expansion function. It is unknown
whether this is an optimal solution to the problem which was discovered in the
SHA or whether it's simply a bandaid which fixes the problem with a minimum of
effort (for example the reengineering of a great many Capstone chips).
*/
/* h files included here to make this just one file ... */
/* sha.c */
#include "sha1.h"
#include <stdio.h>
#include <string.h>
static void SHAtoByte(BYTE *output, UINT4 *input, unsigned int len);
/* The SHS block size and message digest sizes, in bytes */
#define SHS_DATASIZE 64
#define SHS_DIGESTSIZE 20
/* The SHS f()-functions. The f1 and f3 functions can be optimized to
save one boolean operation each - thanks to Rich Schroeppel,
rcs@cs.arizona.edu for discovering this */
/*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */
#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
/*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */
#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
/* The SHS Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHS initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* Note that it may be necessary to add parentheses to these macros if they
are to be called with expressions as arguments */
/* 32-bit rotate left - kludged with shifts */
#define ROTL(n,X) ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
/* The initial expanding function. The hash function is defined over an
80-UINT2 expanded input array W, where the first 16 are copies of the input
data, and the remaining 64 are defined by
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
This implementation generates these values on the fly in a circular
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
optimization.
The updated SHS changes the expanding function by adding a rotate of 1
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
for this information */
#define expand(W,i) ( W[ i & 15 ] = ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
/* The prototype SHS sub-round. The fundamental sub-round is:
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
b' = a;
c' = ROTL( 30, b );
d' = c;
e' = d;
but this is implemented by unrolling the loop 5 times and renaming the
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
This code is then replicated 20 times for each of the 4 functions, using
the next 20 values from the W[] array each time */
#define subRound(a, b, c, d, e, f, k, data) \
( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
/* Initialize the SHS values */
void SHAInit(SHA_CTX *shsInfo)
{
endianTest(&shsInfo->Endianness);
/* Set the h-vars to their initial values */
shsInfo->digest[ 0 ] = h0init;
shsInfo->digest[ 1 ] = h1init;
shsInfo->digest[ 2 ] = h2init;
shsInfo->digest[ 3 ] = h3init;
shsInfo->digest[ 4 ] = h4init;
/* Initialise bit count */
shsInfo->countLo = shsInfo->countHi = 0;
}
/* Perform the SHS transformation. Note that this code, like MD5, seems to
break some optimizing compilers due to the complexity of the expressions
and the size of the basic block. It may be necessary to split it into
sections, e.g. based on the four subrounds
Note that this corrupts the shsInfo->data area */
static void SHSTransform( digest, data )
UINT4 *digest, *data ;
{
UINT4 A, B, C, D, E; /* Local vars */
UINT4 eData[ 16 ]; /* Expanded data */
/* Set up first buffer and local data buffer */
A = digest[ 0 ];
B = digest[ 1 ];
C = digest[ 2 ];
D = digest[ 3 ];
E = digest[ 4 ];
memcpy( (POINTER)eData, (POINTER)data, SHS_DATASIZE );
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
subRound( A, B, C, D, E, f1, K1, eData[ 0 ] );
subRound( E, A, B, C, D, f1, K1, eData[ 1 ] );
subRound( D, E, A, B, C, f1, K1, eData[ 2 ] );
subRound( C, D, E, A, B, f1, K1, eData[ 3 ] );
subRound( B, C, D, E, A, f1, K1, eData[ 4 ] );
subRound( A, B, C, D, E, f1, K1, eData[ 5 ] );
subRound( E, A, B, C, D, f1, K1, eData[ 6 ] );
subRound( D, E, A, B, C, f1, K1, eData[ 7 ] );
subRound( C, D, E, A, B, f1, K1, eData[ 8 ] );
subRound( B, C, D, E, A, f1, K1, eData[ 9 ] );
subRound( A, B, C, D, E, f1, K1, eData[ 10 ] );
subRound( E, A, B, C, D, f1, K1, eData[ 11 ] );
subRound( D, E, A, B, C, f1, K1, eData[ 12 ] );
subRound( C, D, E, A, B, f1, K1, eData[ 13 ] );
subRound( B, C, D, E, A, f1, K1, eData[ 14 ] );
subRound( A, B, C, D, E, f1, K1, eData[ 15 ] );
subRound( E, A, B, C, D, f1, K1, expand( eData, 16 ) );
subRound( D, E, A, B, C, f1, K1, expand( eData, 17 ) );
subRound( C, D, E, A, B, f1, K1, expand( eData, 18 ) );
subRound( B, C, D, E, A, f1, K1, expand( eData, 19 ) );
subRound( A, B, C, D, E, f2, K2, expand( eData, 20 ) );
subRound( E, A, B, C, D, f2, K2, expand( eData, 21 ) );
subRound( D, E, A, B, C, f2, K2, expand( eData, 22 ) );
subRound( C, D, E, A, B, f2, K2, expand( eData, 23 ) );
subRound( B, C, D, E, A, f2, K2, expand( eData, 24 ) );
subRound( A, B, C, D, E, f2, K2, expand( eData, 25 ) );
subRound( E, A, B, C, D, f2, K2, expand( eData, 26 ) );
subRound( D, E, A, B, C, f2, K2, expand( eData, 27 ) );
subRound( C, D, E, A, B, f2, K2, expand( eData, 28 ) );
subRound( B, C, D, E, A, f2, K2, expand( eData, 29 ) );
subRound( A, B, C, D, E, f2, K2, expand( eData, 30 ) );
subRound( E, A, B, C, D, f2, K2, expand( eData, 31 ) );
subRound( D, E, A, B, C, f2, K2, expand( eData, 32 ) );
subRound( C, D, E, A, B, f2, K2, expand( eData, 33 ) );
subRound( B, C, D, E, A, f2, K2, expand( eData, 34 ) );
subRound( A, B, C, D, E, f2, K2, expand( eData, 35 ) );
subRound( E, A, B, C, D, f2, K2, expand( eData, 36 ) );
subRound( D, E, A, B, C, f2, K2, expand( eData, 37 ) );
subRound( C, D, E, A, B, f2, K2, expand( eData, 38 ) );
subRound( B, C, D, E, A, f2, K2, expand( eData, 39 ) );
subRound( A, B, C, D, E, f3, K3, expand( eData, 40 ) );
subRound( E, A, B, C, D, f3, K3, expand( eData, 41 ) );
subRound( D, E, A, B, C, f3, K3, expand( eData, 42 ) );
subRound( C, D, E, A, B, f3, K3, expand( eData, 43 ) );
subRound( B, C, D, E, A, f3, K3, expand( eData, 44 ) );
subRound( A, B, C, D, E, f3, K3, expand( eData, 45 ) );
subRound( E, A, B, C, D, f3, K3, expand( eData, 46 ) );
subRound( D, E, A, B, C, f3, K3, expand( eData, 47 ) );
subRound( C, D, E, A, B, f3, K3, expand( eData, 48 ) );
subRound( B, C, D, E, A, f3, K3, expand( eData, 49 ) );
subRound( A, B, C, D, E, f3, K3, expand( eData, 50 ) );
subRound( E, A, B, C, D, f3, K3, expand( eData, 51 ) );
subRound( D, E, A, B, C, f3, K3, expand( eData, 52 ) );
subRound( C, D, E, A, B, f3, K3, expand( eData, 53 ) );
subRound( B, C, D, E, A, f3, K3, expand( eData, 54 ) );
subRound( A, B, C, D, E, f3, K3, expand( eData, 55 ) );
subRound( E, A, B, C, D, f3, K3, expand( eData, 56 ) );
subRound( D, E, A, B, C, f3, K3, expand( eData, 57 ) );
subRound( C, D, E, A, B, f3, K3, expand( eData, 58 ) );
subRound( B, C, D, E, A, f3, K3, expand( eData, 59 ) );
subRound( A, B, C, D, E, f4, K4, expand( eData, 60 ) );
subRound( E, A, B, C, D, f4, K4, expand( eData, 61 ) );
subRound( D, E, A, B, C, f4, K4, expand( eData, 62 ) );
subRound( C, D, E, A, B, f4, K4, expand( eData, 63 ) );
subRound( B, C, D, E, A, f4, K4, expand( eData, 64 ) );
subRound( A, B, C, D, E, f4, K4, expand( eData, 65 ) );
subRound( E, A, B, C, D, f4, K4, expand( eData, 66 ) );
subRound( D, E, A, B, C, f4, K4, expand( eData, 67 ) );
subRound( C, D, E, A, B, f4, K4, expand( eData, 68 ) );
subRound( B, C, D, E, A, f4, K4, expand( eData, 69 ) );
subRound( A, B, C, D, E, f4, K4, expand( eData, 70 ) );
subRound( E, A, B, C, D, f4, K4, expand( eData, 71 ) );
subRound( D, E, A, B, C, f4, K4, expand( eData, 72 ) );
subRound( C, D, E, A, B, f4, K4, expand( eData, 73 ) );
subRound( B, C, D, E, A, f4, K4, expand( eData, 74 ) );
subRound( A, B, C, D, E, f4, K4, expand( eData, 75 ) );
subRound( E, A, B, C, D, f4, K4, expand( eData, 76 ) );
subRound( D, E, A, B, C, f4, K4, expand( eData, 77 ) );
subRound( C, D, E, A, B, f4, K4, expand( eData, 78 ) );
subRound( B, C, D, E, A, f4, K4, expand( eData, 79 ) );
/* Build message digest */
digest[ 0 ] += A;
digest[ 1 ] += B;
digest[ 2 ] += C;
digest[ 3 ] += D;
digest[ 4 ] += E;
}
/* When run on a little-endian CPU we need to perform byte reversal on an
array of long words. */
static void longReverse(UINT4 *buffer, int byteCount, int Endianness )
{
UINT4 value;
if (Endianness==TRUE) return;
byteCount /= sizeof( UINT4 );
while( byteCount-- )
{
value = *buffer;
value = ( ( value & 0xFF00FF00L ) >> 8 ) | \
( ( value & 0x00FF00FFL ) << 8 );
*buffer++ = ( value << 16 ) | ( value >> 16 );
}
}
/* Update SHS for a block of data */
void SHAUpdate(SHA_CTX *shsInfo, BYTE *buffer, int count)
{
UINT4 tmp;
int dataCount;
/* Update bitcount */
tmp = shsInfo->countLo;
if ( ( shsInfo->countLo = tmp + ( ( UINT4 ) count << 3 ) ) < tmp )
shsInfo->countHi++; /* Carry from low to high */
shsInfo->countHi += count >> 29;
/* Get count of bytes already in data */
dataCount = ( int ) ( tmp >> 3 ) & 0x3F;
/* Handle any leading odd-sized chunks */
if( dataCount )
{
BYTE *p = ( BYTE * ) shsInfo->data + dataCount;
dataCount = SHS_DATASIZE - dataCount;
if( count < dataCount )
{
memcpy( p, buffer, count );
return;
}
memcpy( p, buffer, dataCount );
longReverse( shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
SHSTransform( shsInfo->digest, shsInfo->data );
buffer += dataCount;
count -= dataCount;
}
/* Process data in SHS_DATASIZE chunks */
while( count >= SHS_DATASIZE )
{
memcpy( (POINTER)shsInfo->data, (POINTER)buffer, SHS_DATASIZE );
longReverse( shsInfo->data, SHS_DATASIZE, shsInfo->Endianness );
SHSTransform( shsInfo->digest, shsInfo->data );
buffer += SHS_DATASIZE;
count -= SHS_DATASIZE;
}
/* Handle any remaining bytes of data. */
memcpy( (POINTER)shsInfo->data, (POINTER)buffer, count );
}
/* Final wrapup - pad to SHS_DATASIZE-byte boundary with the bit pattern
1 0* (64-bit count of bits processed, MSB-first) */
void SHAFinal(BYTE *output, SHA_CTX *shsInfo)
{
int count;
BYTE *dataPtr;
/* Compute number of bytes mod 64 */
count = ( int ) shsInfo->countLo;
count = ( count >> 3 ) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
dataPtr = ( BYTE * ) shsInfo->data + count;
*dataPtr++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = SHS_DATASIZE - 1 - count;
/* Pad out to 56 mod 64 */
if( count < 8 )
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset( dataPtr, 0, count );
longReverse( shsInfo->data, SHS_DATASIZE, shsInfo->Endianness );
SHSTransform( shsInfo->digest, shsInfo->data );
/* Now fill the next block with 56 bytes */
memset( (POINTER)shsInfo->data, 0, SHS_DATASIZE - 8 );
}
else
/* Pad block to 56 bytes */
memset( dataPtr, 0, count - 8 );
/* Append length in bits and transform */
shsInfo->data[ 14 ] = shsInfo->countHi;
shsInfo->data[ 15 ] = shsInfo->countLo;
longReverse( shsInfo->data, SHS_DATASIZE - 8, shsInfo->Endianness );
SHSTransform( shsInfo->digest, shsInfo->data );
/* Output to an array of bytes */
SHAtoByte(output, shsInfo->digest, SHS_DIGESTSIZE);
/* Zeroise sensitive stuff */
memset((POINTER)shsInfo, 0, sizeof(shsInfo));
}
static void SHAtoByte(BYTE *output, UINT4 *input, unsigned int len)
{ /* Output SHA digest in byte array */
unsigned int i, j;
for(i = 0, j = 0; j < len; i++, j += 4)
{
output[j+3] = (BYTE)( input[i] & 0xff);
output[j+2] = (BYTE)((input[i] >> 8 ) & 0xff);
output[j+1] = (BYTE)((input[i] >> 16) & 0xff);
output[j ] = (BYTE)((input[i] >> 24) & 0xff);
}
}
/* endian.c */
void endianTest(int *endian_ness)
{
if((*(unsigned short *) ("#S") >> 8) == '#')
{
/* printf("Big endian = no change\n"); */
*endian_ness = !(0);
}
else
{
/* printf("Little endian = swap\n"); */
*endian_ness = 0;
}
}

52
src/libkirk/sha1.h Normal file
View file

@ -0,0 +1,52 @@
#ifndef _GLOBAL_H_
#define _GLOBAL_H_ 1
/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;
/* UINT4 defines a four byte word */
typedef unsigned int UINT4;
/* BYTE defines a unsigned character */
typedef unsigned char BYTE;
#ifndef TRUE
#define FALSE 0
#define TRUE ( !FALSE )
#endif /* TRUE */
#endif /* end _GLOBAL_H_ */
/* sha.h */
#ifndef _SHA_H_
#define _SHA_H_ 1
/* #include "global.h" */
/* The structure for storing SHS info */
typedef struct
{
UINT4 digest[ 5 ]; /* Message digest */
UINT4 countLo, countHi; /* 64-bit bit count */
UINT4 data[ 16 ]; /* SHS data buffer */
int Endianness;
} SHA_CTX;
/* Message digest functions */
void SHAInit(SHA_CTX *);
void SHAUpdate(SHA_CTX *, BYTE *buffer, int count);
void SHAFinal(BYTE *output, SHA_CTX *);
#endif /* end _SHA_H_ */
/* endian.h */
#ifndef _ENDIAN_H_
#define _ENDIAN_H_ 1
void endianTest(int *endianness);
#endif /* end _ENDIAN_H_ */

487
src/pkgrip.c Normal file
View file

@ -0,0 +1,487 @@
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include "libkirk/aes.h"
#include "libkirk/amctrl.h"
#include "libkirk/kirk_engine.h"
#define PKGRIP_VERSION "1.1a"
/* NOTE: Supports files up to 16 GB */
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u64;
char *exec;
char *pkgfile;
u8 public_key[16], static_public_key[16], pkg_key[16], xor_key[16],
title_id[10], *pkg_header, *pkg_file_name;
u64 *pkg_file_name_offset, *pkg_file_name_length, *pkg_file_offset,
*pkg_file_size, *pkg_is_file, *pkg_entry_type;
u64 pkg_enc_start, pkg_enc_size, pkg_file_count;
int xpsp = 0;
int xps3 = 0;
u8 PSPAESKey[16] = {0x07, 0xF2, 0xC6, 0x82, 0x90, 0xB5, 0x0D, 0x2C,
0x33, 0x81, 0x8D, 0x70, 0x9B, 0x60, 0xE6, 0x2B};
u8 PS3AESKey[16] = {0x2E, 0x7B, 0x71, 0xD7, 0xC9, 0xC9, 0xA1, 0x4E,
0xA3, 0x22, 0x1F, 0x18, 0x88, 0x28, 0xB8, 0xF8};
void usage(const char *fmt, ...) {
va_list list;
char msg[256];
va_start(list, fmt);
vsprintf(msg, fmt, list);
va_end(list);
printf("%s", msg);
printf("\nUsage:\n\t%s [options] pathtopkg\n\n", exec);
printf("Options: (optional)\n\t-psp - extract PSP files only\n\t-ps3 - "
"extract PS3 files only\n\tBoth enabled by default.\n\n");
exit(0);
}
void dumpPS1key(const char *path) {
int flag = 2;
PGD_HEADER PGD;
memset(&PGD, 0, sizeof(PGD_HEADER));
MAC_KEY mkey;
u8 buf[1024];
kirk_init();
FILE *fd = fopen(path, "rb");
fseek(fd, 0x24, 0);
u64 psar, pgdoff = 0;
if (fread(&psar, 1, 4, fd)) {
};
fseek(fd, psar, 0);
if (fread(buf, 1, 16, fd)) {
};
if (!memcmp(buf, "PSTITLE", 7))
pgdoff = psar + 0x200;
else if (!memcmp(buf, "PSISO", 5))
pgdoff = psar + 0x400;
else {
fclose(fd);
return;
}
fseek(fd, pgdoff, 0);
if (fread(buf, 1, sizeof(buf), fd)) {
};
fclose(fd);
PGD.buf = buf;
PGD.key_index = *(u64 *)(buf + 4);
PGD.drm_type = *(u64 *)(buf + 8);
// Set the hashing, crypto and open modes.
if (PGD.drm_type == 1) {
PGD.mac_type = 1;
flag |= 4;
if (PGD.key_index > 1) {
PGD.mac_type = 3;
flag |= 8;
}
PGD.cipher_type = 1;
} else {
PGD.mac_type = 2;
PGD.cipher_type = 2;
}
PGD.open_flag = flag;
int rt = sceDrmBBMacInit(&mkey, PGD.mac_type);
printf("0x%08X\n", rt);
rt = sceDrmBBMacUpdate(&mkey, buf, 0x70);
printf("0x%08X\n", rt);
rt = bbmac_getkey(&mkey, buf + 0x70, PGD.vkey);
printf("0x%08X\n", rt);
char Path[1024];
strcpy(Path, path);
int len = strlen(Path);
while (Path[len] != '/')
len--;
Path[len + 1] = 0;
strcat(Path, "KEYS.BIN");
fd = fopen(Path, "wb");
fwrite(PGD.vkey, 1, 16, fd);
fclose(fd);
}
void printhex(u8 *buf) {
int i;
for (i = 0; i < 16; i++)
printf("%02X ", buf[i]);
printf("\n");
}
u64 tou64(u8 *buf) {
return (u64)((buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3]);
}
void xor128(u8 *dst, u8 *xor1, u8 *xor2) {
int i;
for (i = 0; i < 16; i++)
dst[i] = xor1[i] ^ xor2[i];
}
void iter128(u8 *buf) {
int i;
for (i = 15; i >= 0; i--) {
buf[i]++;
if (buf[i])
break;
}
}
void setiter128(u8 *dst, int size) {
memcpy(dst, static_public_key, 16);
int i;
for (i = 0; i < size; i++)
iter128(dst);
}
void check_pkg_exist(const char *file) {
FILE *fd = fopen(file, "rb");
if (fd == NULL)
usage("Could not locate file \"%s\"\n", file);
fclose(fd);
}
void check_pkg_supported(const char *file) {
u8 buf[4];
FILE *fd = fopen(file, "rb");
if (fread(buf, 1, sizeof(buf), fd)) {
};
fclose(fd);
if (memcmp(buf, "\x7FPKG", 4))
usage("Unknown PKG detected!\n");
}
void check_pkg_retail(const char *file) {
u8 buf[1];
FILE *fd = fopen(file, "rb");
fseek(fd, 4, 0);
if (fread(buf, 1, sizeof(buf), fd)) {
};
fclose(fd);
if (buf[0] != 0x80)
usage("Non-retail PKG type detected!\n");
}
void check_pkg_type(const char *file) {
u8 buf[1];
FILE *fd = fopen(file, "rb");
fseek(fd, 7, 0);
if (fread(buf, 1, sizeof(buf), fd)) {
};
fclose(fd);
if (buf[0] != 0x01 && buf[0] != 0x02)
usage("File is not a PS3/PSP PKG!\n");
}
void check_pkg_size(const char *file) {
u8 buf[4];
u64 size, pkgsize;
FILE *fd = fopen(file, "rb");
fseek(fd, 0x1C, 0);
if (fread(buf, 1, sizeof(buf), fd)) {
};
pkgsize = tou64(buf);
fseek(fd, 0x18, 0);
if (fread(buf, 1, sizeof(buf), fd)) {
};
fseek(fd, 0, 2);
size = ftell(fd);
fclose(fd);
if (size != pkgsize)
usage("Corrupt PKG detected!\ndetected size: %u\nexpected size: %u\n",
size, tou64(buf));
//if (tou64(buf))
// usage("PKG size too large, must be less than 16 GB!\n");
}
void get_pkg_info(const char *file) {
pkg_header = malloc(0x80);
FILE *fd = fopen(file, "rb");
if (fread(pkg_header, 1, 0x80, fd)) {
};
fclose(fd);
memcpy(title_id, pkg_header + 0x37, 9);
title_id[9] = 0;
memcpy(public_key, pkg_header + 0x70, 16);
memcpy(static_public_key, pkg_header + 0x70, 16);
memcpy(pkg_key, pkg_header[0x07] == 0x01 ? PS3AESKey : PSPAESKey,
sizeof(pkg_key));
pkg_file_count = tou64(pkg_header + 0x14);
pkg_enc_start = tou64(pkg_header + 0x24);
pkg_enc_size = tou64(pkg_header + 0x2C);
pkg_file_name_offset = malloc(pkg_file_count * sizeof(u64));
pkg_file_name_length = malloc(pkg_file_count * sizeof(u64));
pkg_file_offset = malloc(pkg_file_count * sizeof(u64));
pkg_file_size = malloc(pkg_file_count * sizeof(u64));
pkg_is_file = malloc(pkg_file_count * sizeof(u64));
pkg_entry_type = malloc(pkg_file_count * sizeof(u64));
printf("PKG info:\n");
printf("\tPKG type: %s\n", pkg_header[0x07] == 0x01 ? "PS3" : "PSP");
printf("\tContent ID: %s\n", pkg_header + 0x30);
printf("\tTitle ID: %s\n", title_id);
printf("\tPKG file count: %u\n", pkg_file_count);
printf("\tPKG size: %u\n\n", tou64(pkg_header + 0x1C));
}
void extract_pkg(const char *file) {
int i, j, extracted = 0;
u64 MB = 1024 * 1024;
u8 buf[16], *decbuf = malloc(MB);
char path[512];
AES_ctx ctx;
memset(&ctx, 0, sizeof(AES_ctx));
AES_set_key(&ctx, pkg_key, AES_KEY_LEN_128);
sprintf(path, "./%s_dec", title_id);
mkdir(path, 0777);
FILE *fd = fopen(file, "rb");
fseek(fd, pkg_enc_start, 0);
for (i = 0; i < (int)pkg_file_count * 2; i++) {
if (fread(buf, 1, sizeof(buf), fd)) {
};
AES_encrypt(&ctx, public_key, xor_key);
xor128(buf, buf, xor_key);
iter128(public_key);
if (!(i & 1)) {
pkg_file_name_offset[i / 2] = tou64(buf);
pkg_file_name_length[i / 2] = tou64(buf + 4);
pkg_file_offset[i / 2] = tou64(buf + 12);
} else {
pkg_file_size[(i - 1) / 2] = tou64(buf + 4);
pkg_entry_type[(i - 1) / 2] = tou64(buf + 8);
}
}
for (i = 0; i < (int)pkg_file_count; i++) {
if (!xpsp && (pkg_entry_type[i] >> 24) == 0x90)
continue;
if (!xps3 && ((pkg_entry_type[i] >> 24) != 0x90) &&
((pkg_entry_type[i] & 0xFF) != 0x04))
continue;
int namelength = (pkg_file_name_length[i] + 15) & -16;
int isfile = !((pkg_entry_type[i] & 0xFF) == 0x04 && !pkg_file_size[i]);
pkg_file_name = malloc(namelength);
fseek(fd, pkg_enc_start + pkg_file_name_offset[i], 0);
if (fread(pkg_file_name, 1, namelength, fd)) {
};
setiter128(public_key, pkg_file_name_offset[i] >> 4);
AES_set_key(&ctx,
(pkg_entry_type[i] >> 24) == 0x90 ? PSPAESKey : PS3AESKey,
AES_KEY_LEN_128);
for (j = 0; j < (namelength >> 4); j++) {
AES_encrypt(&ctx, public_key, xor_key);
xor128(pkg_file_name + (j * 16), pkg_file_name + (j * 16), xor_key);
iter128(public_key);
}
sprintf(path, "%s_dec/%s", title_id, pkg_file_name);
char tmpstr[21];
sprintf(tmpstr, "Extracting %s file:",
((pkg_entry_type[i] >> 24) == 0x90) ? "PSP" : "PS3");
printf("\n%s\n%s\n", isfile ? tmpstr : "Creating directory:", path);
if (isfile) {
u64 szcheck = 0, mincheck = 0;
FILE *dst = fopen(path, "wb");
fseek(fd, pkg_enc_start + pkg_file_offset[i], 0);
if (fread(decbuf, 1,
(pkg_file_size[i] >= MB) ? MB : pkg_file_size[i], fd)) {
};
setiter128(public_key, pkg_file_offset[i] >> 4);
printf("%u/%u bytes written\r", 0, pkg_file_size[i]);
for (j = 0; j < (int)(pkg_file_size[i] >> 4); j++) {
if (szcheck == MB) {
szcheck = 0;
mincheck += MB;
fwrite(decbuf, 1, MB, dst);
printf("%u/%u bytes written\r", mincheck, pkg_file_size[i]);
if (fread(decbuf, 1,
((pkg_file_size[i] - (j << 4)) >= MB)
? MB
: pkg_file_size[i] - (j << 4),
fd)) {
};
}
AES_encrypt(&ctx, public_key, xor_key);
xor128(decbuf + ((j << 4) - mincheck),
decbuf + ((j << 4) - mincheck), xor_key);
iter128(public_key);
szcheck += 16;
}
if (mincheck < pkg_file_size[i]) {
printf("%u/%u bytes written", pkg_file_size[i],
pkg_file_size[i]);
fwrite(decbuf, 1, pkg_file_size[i] - mincheck, dst);
}
fclose(dst);
printf("\n");
extracted++;
int pathlen = strlen(path);
if (!strcmp(path + pathlen - 9, "EBOOT.PBP")) {
dst = fopen(path, "rb");
fseek(dst, 0x24, 0);
u64 psar;
if (fread(&psar, 1, 4, dst)) {
};
fseek(dst, psar, 0);
u8 block[16];
if (fread(block, 1, sizeof(block), dst)) {
};
if (!memcmp(block, "PSTITLE", 7))
fseek(dst, psar + 0x200, 0);
else if (!memcmp(block, "PSISO", 5))
fseek(dst, psar + 0x400, 0);
if (fread(block, 1, 4, dst)) {
};
if (!memcmp(block, "\x00PGD", 4)) {
dumpPS1key(path);
printf("PS1 KEYS.BIN dumped.\n");
extracted++;
}
fclose(dst);
} else if (!strcmp(path + pathlen - 4, ".PTF")) {
u8 *pgdbuf = malloc(pkg_file_size[i] - 0x80);
dst = fopen(path, "rb");
fseek(dst, 0x80, 0);
if (fread(pgdbuf, 1, pkg_file_size[i] - 0x80, dst)) {
};
fclose(dst);
kirk_init();
u64 pgdsize =
decrypt_pgd(pgdbuf, pkg_file_size[i] - 0x80, 2, NULL);
path[pathlen - 4] = 0;
strcat(path, "_DEC.PTF");
dst = fopen(path, "wb");
fwrite(pgdbuf + 0x90, 1, pgdsize, dst);
fclose(dst);
printf("PTF theme decrypted.\nDecrypted size: %u bytes\n",
pgdsize);
extracted++;
}
} else {
mkdir(path, 0777);
}
free(pkg_file_name);
}
free(decbuf);
fclose(fd);
printf("\nFiles extracted: %u\n", extracted);
}
void free_mallocs() {
if (pkg_header)
free(pkg_header);
if (pkg_file_name_offset)
free(pkg_file_name_offset);
if (pkg_file_name_length)
free(pkg_file_name_length);
if (pkg_file_offset)
free(pkg_file_offset);
if (pkg_file_size)
free(pkg_file_size);
if (pkg_is_file)
free(pkg_is_file);
if (pkg_entry_type)
free(pkg_entry_type);
}
int main(int argc, char **argv) {
exec = argv[0];
if (argc < 2)
usage("");
int i;
for (i = 1; i < (argc - 1); i++) {
if (!strcmp(argv[i], "-psp"))
xpsp = 1;
else if (!strcmp(argv[i], "-ps3"))
xps3 = 1;
}
if (!xpsp && !xps3) {
xpsp = 1;
xps3 = 1;
}
pkgfile = argv[argc - 1];
check_pkg_exist(pkgfile);
check_pkg_supported(pkgfile);
check_pkg_retail(pkgfile);
check_pkg_type(pkgfile);
check_pkg_size(pkgfile);
get_pkg_info(pkgfile);
extract_pkg(pkgfile);
free_mallocs();
return 0;
}