1
Fork 0

Reformat code

This commit is contained in:
Joshua Goins 2022-08-16 07:41:12 -04:00
parent f0713452fc
commit 81d5045037
13 changed files with 370 additions and 319 deletions

33
.clang-format Normal file
View file

@ -0,0 +1,33 @@
---
AllowShortIfStatementsOnASingleLine: Never
CompactNamespaces: 'false'
DisableFormat: 'false'
IndentCaseLabels: 'true'
IndentPPDirectives: BeforeHash
IndentWidth: '4'
Language: Cpp
NamespaceIndentation: All
PointerAlignment: Left
ReflowComments: 'true'
SortIncludes: 'true'
SortUsingDeclarations: 'true'
SpacesInCStyleCastParentheses: 'false'
Standard: Cpp11
TabWidth: '0'
UseTab: Never
AllowShortEnumsOnASingleLine: false
BraceWrapping:
AfterEnum: true
AccessModifierOffset: -4
SpaceAfterTemplateKeyword: 'false'
AllowAllParametersOfDeclarationOnNextLine: false
AlignAfterOpenBracket: AlwaysBreak
BinPackArguments: false
BinPackParameters: false
ColumnLimit: 120
AllowShortBlocksOnASingleLine: 'false'
AllowShortCaseLabelsOnASingleLine: 'false'
AllowShortFunctionsOnASingleLine: 'Empty'
AllowShortLambdasOnASingleLine: 'Empty'
AllowShortLoopsOnASingleLine: 'false'
SeparateDefinitionBlocks : 'Always'

8
.editorconfig Normal file
View file

@ -0,0 +1,8 @@
root = true
[*]
insert_final_newline = true
indent_style = space
indent_size = 4
tab_width = 4
max_line_length = 120

View file

@ -9,21 +9,21 @@ find_package(SDL2 REQUIRED)
add_subdirectory(extern) add_subdirectory(extern)
add_executable(raytracer add_executable(raytracer
include/camera.h include/camera.h
include/intersections.h include/intersections.h
include/lighting.h include/lighting.h
include/ray.h include/ray.h
include/image.h include/image.h
include/tiny_obj_loader.h include/tiny_obj_loader.h
include/scene.h include/scene.h
include/aabb.h include/aabb.h
include/octree.h include/octree.h
src/main.cpp src/main.cpp
src/scene.cpp) src/scene.cpp)
target_include_directories(raytracer PUBLIC include PRIVATE ${GLM_INCLUDE_DIR}) target_include_directories(raytracer PUBLIC include PRIVATE ${GLM_INCLUDE_DIR})
target_link_libraries(raytracer PUBLIC stb SDL2::Main imgui glad) target_link_libraries(raytracer PUBLIC stb SDL2::Main imgui glad)
set_target_properties(raytracer PROPERTIES set_target_properties(raytracer PROPERTIES
CXX_STANDARD 17 CXX_STANDARD 17
CXX_STANDARD_REQUIRED YES CXX_STANDARD_REQUIRED YES
CXX_EXTENSIONS NO CXX_EXTENSIONS NO
) )

View file

@ -1,6 +1,8 @@
# Raytracer # Raytracer
A multi-threaded raytracer using glm, tinyobjloader and C++17. The UI is written in imgui and image display is A multi-threaded raytracer using glm, tinyobjloader and C++17. The UI is written in imgui and image display is
rendered using OpenGL. I tried to write this to not be insanely fast or compact like other raytracers, but to be readable and understandable. rendered using OpenGL. I tried to write this to not be insanely fast or compact like other raytracers, but to be
readable and understandable.
![example result](misc/output.png) ![example result](misc/output.png)

View file

@ -2,28 +2,25 @@
struct AABB { struct AABB {
glm::vec3 min, max; glm::vec3 min, max;
glm::vec3 center() const { glm::vec3 center() const {
return 0.5f * (max + min); return 0.5f * (max + min);
} }
glm::vec3 extent() const { glm::vec3 extent() const {
return max - center(); return max - center();
} }
bool contains(const glm::vec3 point) const { bool contains(const glm::vec3 point) const {
return glm::all(glm::lessThan(point, max)) && glm::all(glm::greaterThan(point, min)); return glm::all(glm::lessThan(point, max)) && glm::all(glm::greaterThan(point, min));
} }
bool inside(const AABB extent) const { bool inside(const AABB extent) const {
return(max.x > extent.min.x && return (
min.x < extent.max.x && max.x > extent.min.x && min.x < extent.max.x && max.y > extent.min.y && min.y < extent.max.y &&
max.y > extent.min.y && max.z > extent.min.z && min.z < extent.max.z);
min.y < extent.max.y &&
max.z > extent.min.z &&
min.z < extent.max.z);
} }
bool contains(const Ray& ray) const { bool contains(const Ray& ray) const {
const float t1 = (min.x - ray.origin.x) / ray.direction.x; const float t1 = (min.x - ray.origin.x) / ray.direction.x;
const float t2 = (max.x - ray.origin.x) / ray.direction.x; const float t2 = (max.x - ray.origin.x) / ray.direction.x;
@ -31,19 +28,19 @@ struct AABB {
const float t4 = (max.y - ray.origin.y) / ray.direction.y; const float t4 = (max.y - ray.origin.y) / ray.direction.y;
const float t5 = (min.z - ray.origin.z) / ray.direction.z; const float t5 = (min.z - ray.origin.z) / ray.direction.z;
const float t6 = (max.z - ray.origin.z) / ray.direction.z; const float t6 = (max.z - ray.origin.z) / ray.direction.z;
const float tmin = std::min(std::max(std::min(t1, t2), std::min(t3, t4)), std::min(t5, t6)); const float tmin = std::min(std::max(std::min(t1, t2), std::min(t3, t4)), std::min(t5, t6));
const float tmax = std::min(std::min(std::max(t1, t2), std::max(t3, t4)), std::max(t5, t6)); const float tmax = std::min(std::min(std::max(t1, t2), std::max(t3, t4)), std::max(t5, t6));
// if tmax < 0, ray (line) is intersecting AABB, but whole AABB is behing us // if tmax < 0, ray (line) is intersecting AABB, but whole AABB is behing us
//if(tmax < 0) // if(tmax < 0)
// return false; // return false;
// if tmin > tmax, ray doesn't intersect AABB // if tmin > tmax, ray doesn't intersect AABB
if(tmin > tmax) if (tmin > tmax)
return false; return false;
if(tmin < 0.0f) if (tmin < 0.0f)
return true; return true;
return true; return true;

View file

@ -5,24 +5,26 @@
class Camera { class Camera {
public: public:
Camera() : position(glm::vec3(0)), direction(glm::vec3(0)) {} Camera() : position(glm::vec3(0)), direction(glm::vec3(0)) {}
Camera(glm::vec3 position, glm::vec3 direction) : position(position), direction(direction) {} Camera(glm::vec3 position, glm::vec3 direction) : position(position), direction(direction) {}
void look_at(glm::vec3 eye, glm::vec3 target) { void look_at(glm::vec3 eye, glm::vec3 target) {
position = eye; position = eye;
direction = glm::normalize(target - eye); direction = glm::normalize(target - eye);
} }
Ray get_ray(const int32_t x, const int32_t y, const int32_t width, const int32_t height) const { Ray get_ray(const int32_t x, const int32_t y, const int32_t width, const int32_t height) const {
const glm::vec3 up = glm::vec3(0, 1, 0); const glm::vec3 up = glm::vec3(0, 1, 0);
const glm::vec3 right = glm::normalize(glm::cross(direction, up)); const glm::vec3 right = glm::normalize(glm::cross(direction, up));
const float h2 = height / 2.0f; const float h2 = height / 2.0f;
const float w2 = width / 2.0f; const float w2 = width / 2.0f;
const glm::vec3 ray_dir = position + (h2 / tan(glm::radians(fov) / 2)) * direction + (y - h2) * up + static_cast<float>(x - w2) * right; const glm::vec3 ray_dir = position + (h2 / tan(glm::radians(fov) / 2)) * direction + (y - h2) * up +
static_cast<float>(x - w2) * right;
return Ray(position, ray_dir); return Ray(position, ray_dir);
} }
glm::vec3 position, direction; glm::vec3 position, direction;
float fov = 45.0f; float fov = 45.0f;
}; };

View file

@ -1,22 +1,21 @@
#pragma once #pragma once
#include <glm/glm.hpp>
#include <array> #include <array>
#include <glm/glm.hpp>
template<class T, int Width, int Height> template<class T, int Width, int Height> class Image {
class Image {
public: public:
void reset() { void reset() {
array = {}; array = {};
} }
T& get(const int32_t x, const int32_t y) { T& get(const int32_t x, const int32_t y) {
return array[y * Width + x]; return array[y * Width + x];
} }
T get(const int32_t x, const int32_t y) const { T get(const int32_t x, const int32_t y) const {
return array[y * Width + x]; return array[y * Width + x];
} }
std::array<T, Width * Height> array = {}; std::array<T, Width* Height> array = {};
}; };

View file

@ -12,53 +12,57 @@ namespace intersections {
const float b = glm::dot(ray.direction, diff); const float b = glm::dot(ray.direction, diff);
const float c = glm::dot(diff, diff) - sphere.w * sphere.w; const float c = glm::dot(diff, diff) - sphere.w * sphere.w;
float t = b * b - c; float t = b * b - c;
if (t > 0.0) { if (t > 0.0) {
t = -b - glm::sqrt(t); t = -b - glm::sqrt(t);
if (t > 0.0) if (t > 0.0)
return true; return true;
} }
return false; return false;
} }
inline float ray_triangle(const Ray ray, inline float ray_triangle(
const glm::vec3 v0, const Ray ray,
const glm::vec3 v1, const glm::vec3 v0,
const glm::vec3 v2, const glm::vec3 v1,
float& t, const glm::vec3 v2,
float& u, float& t,
float& v) { float& u,
float& v) {
glm::vec3 e1 = v1 - v0; glm::vec3 e1 = v1 - v0;
glm::vec3 e2 = v2 - v0; glm::vec3 e2 = v2 - v0;
glm::vec3 pvec = glm::cross(ray.direction, e2); glm::vec3 pvec = glm::cross(ray.direction, e2);
float det = glm::dot(e1, pvec); float det = glm::dot(e1, pvec);
// if determinant is zero then ray is // if determinant is zero then ray is
// parallel with the triangle plane // parallel with the triangle plane
if (det > -epsilon && det < epsilon) return false; if (det > -epsilon && det < epsilon)
float invdet = 1.0/det; return false;
float invdet = 1.0 / det;
// calculate distance from m[0] to origin // calculate distance from m[0] to origin
glm::vec3 tvec = ray.origin - v0; glm::vec3 tvec = ray.origin - v0;
// u and v are the barycentric coordinates // u and v are the barycentric coordinates
// in triangle if u >= 0, v >= 0 and u + v <= 1 // in triangle if u >= 0, v >= 0 and u + v <= 1
u = glm::dot(tvec, pvec) * invdet; u = glm::dot(tvec, pvec) * invdet;
// check against one edge and opposite point // check against one edge and opposite point
if (u < 0.0 || u > 1.0) return false; if (u < 0.0 || u > 1.0)
return false;
glm::vec3 qvec = glm::cross(tvec, e1); glm::vec3 qvec = glm::cross(tvec, e1);
v = glm::dot(ray.direction, qvec) * invdet; v = glm::dot(ray.direction, qvec) * invdet;
// check against other edges // check against other edges
if (v < 0.0 || u + v > 1.0) return false; if (v < 0.0 || u + v > 1.0)
return false;
//distance along the ray, i.e. intersect at o + t * d
// distance along the ray, i.e. intersect at o + t * d
t = glm::dot(e2, qvec) * invdet; t = glm::dot(e2, qvec) * invdet;
return true; return true;
} }
}; }; // namespace intersections

View file

@ -6,7 +6,7 @@ namespace lighting {
inline float point_light(const glm::vec3 pos, const glm::vec3 light, const glm::vec3 normal) { inline float point_light(const glm::vec3 pos, const glm::vec3 light, const glm::vec3 normal) {
const glm::vec3 dir = glm::normalize(light - pos); const glm::vec3 dir = glm::normalize(light - pos);
const float n_dot_l = glm::max(glm::dot(normal, dir), 0.0f); const float n_dot_l = glm::max(glm::dot(normal, dir), 0.0f);
return n_dot_l; return n_dot_l;
} }
}; }; // namespace lighting

View file

@ -18,73 +18,71 @@ constexpr auto child_pattern = {
glm::vec3(-1, +1, +1), glm::vec3(-1, +1, +1),
}; };
template<typename UnderlyingType> template<typename UnderlyingType> struct Node {
struct Node {
using NodeType = Node<UnderlyingType>; using NodeType = Node<UnderlyingType>;
AABB extent; AABB extent;
int depth = 0; int depth = 0;
std::vector<UnderlyingType> contained_objects; std::vector<UnderlyingType> contained_objects;
std::array<std::unique_ptr<NodeType>, 8> children; std::array<std::unique_ptr<NodeType>, 8> children;
bool is_split = false; bool is_split = false;
void add(UnderlyingType& object, const AABB extent) { void add(UnderlyingType& object, const AABB extent) {
if(is_split) { if (is_split) {
for(auto& child : children) { for (auto& child : children) {
if(extent.inside(child->extent)) if (extent.inside(child->extent))
child->add(object, extent); child->add(object, extent);
} }
} else { } else {
contained_objects.push_back(object); contained_objects.push_back(object);
if(contained_objects.size() >= max_contained_types && depth < max_octree_depth) if (contained_objects.size() >= max_contained_types && depth < max_octree_depth)
split(); split();
} }
} }
void split() { void split() {
is_split = true; is_split = true;
const auto center = extent.center(); const auto center = extent.center();
const auto split_size = extent.extent().x / 2.0f; const auto split_size = extent.extent().x / 2.0f;
int i = 0; int i = 0;
for(auto& point : child_pattern) { for (auto& point : child_pattern) {
auto child = std::make_unique<NodeType>(); auto child = std::make_unique<NodeType>();
child->depth = depth + 1; child->depth = depth + 1;
const auto position = center + point * split_size; const auto position = center + point * split_size;
child->extent.min = glm::vec3(position.x - split_size, position.y - split_size, position.z - split_size); child->extent.min = glm::vec3(position.x - split_size, position.y - split_size, position.z - split_size);
child->extent.max = glm::vec3(position.x + split_size, position.y + split_size, position.z + split_size); child->extent.max = glm::vec3(position.x + split_size, position.y + split_size, position.z + split_size);
children[i++] = std::move(child); children[i++] = std::move(child);
} }
for(auto& object : contained_objects) { for (auto& object : contained_objects) {
for(auto& child : children) { for (auto& child : children) {
if(object.extent.inside(child->extent)) if (object.extent.inside(child->extent))
child->add(object, extent); child->add(object, extent);
} }
} }
contained_objects.clear(); contained_objects.clear();
} }
}; };
template<typename UnderlyingType> template<typename UnderlyingType> struct Octree {
struct Octree {
using NodeType = Node<UnderlyingType>; using NodeType = Node<UnderlyingType>;
NodeType root; NodeType root;
Octree(const glm::vec3 min, const glm::vec3 max) { Octree(const glm::vec3 min, const glm::vec3 max) {
root = NodeType(); root = NodeType();
root.extent.min = min; root.extent.min = min;
root.extent.max = max; root.extent.max = max;
} }
void add(UnderlyingType& object, const AABB extent) { void add(UnderlyingType& object, const AABB extent) {
root.add(object, extent); root.add(object, extent);
} }

View file

@ -1,17 +1,17 @@
#pragma once #pragma once
#include <optional>
#include <glm/glm.hpp>
#include <array> #include <array>
#include <glm/glm.hpp>
#include <iostream> #include <iostream>
#include <optional>
#include <random> #include <random>
#include <tiny_obj_loader.h> #include <tiny_obj_loader.h>
#include "ray.h"
#include "intersections.h" #include "intersections.h"
#include "lighting.h" #include "lighting.h"
#include "octree.h" #include "octree.h"
#include "ray.h"
constexpr glm::vec3 light_position = glm::vec3(5); constexpr glm::vec3 light_position = glm::vec3(5);
constexpr float light_bias = 0.01f; constexpr float light_bias = 0.01f;
@ -32,34 +32,34 @@ glm::vec3 fetch_normal(const Object& object, const tinyobj::mesh_t& mesh, const
struct Object { struct Object {
glm::vec3 position = glm::vec3(0); glm::vec3 position = glm::vec3(0);
glm::vec3 color = glm::vec3(1); glm::vec3 color = glm::vec3(1);
tinyobj::attrib_t attrib; tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes; std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials; std::vector<tinyobj::material_t> materials;
std::unique_ptr<Octree<TriangleBox>> octree; std::unique_ptr<Octree<TriangleBox>> octree;
void create_octree() { void create_octree() {
octree = std::make_unique<Octree<TriangleBox>>(glm::vec3(-2), glm::vec3(2)); octree = std::make_unique<Octree<TriangleBox>>(glm::vec3(-2), glm::vec3(2));
for(auto& shape : shapes) { for (auto& shape : shapes) {
for(size_t i = 0; i < shape.mesh.num_face_vertices.size(); i++) { for (size_t i = 0; i < shape.mesh.num_face_vertices.size(); i++) {
const glm::vec3 v0 = fetch_position(*this, shape.mesh, i, 0); const glm::vec3 v0 = fetch_position(*this, shape.mesh, i, 0);
const glm::vec3 v1 = fetch_position(*this, shape.mesh, i, 1); const glm::vec3 v1 = fetch_position(*this, shape.mesh, i, 1);
const glm::vec3 v2 = fetch_position(*this, shape.mesh, i, 2); const glm::vec3 v2 = fetch_position(*this, shape.mesh, i, 2);
AABB extent; AABB extent;
extent.min = glm::min(v0, v1); extent.min = glm::min(v0, v1);
extent.min = glm::min(extent.min, v2); extent.min = glm::min(extent.min, v2);
extent.max = glm::max(v0, v1); extent.max = glm::max(v0, v1);
extent.max = glm::max(extent.max, v2); extent.max = glm::max(extent.max, v2);
TriangleBox box = {}; TriangleBox box = {};
box.vertice_index = i; box.vertice_index = i;
box.extent = extent; box.extent = extent;
box.mesh = &shape.mesh; box.mesh = &shape.mesh;
octree->add(box, box.extent); octree->add(box, box.extent);
} }
} }
@ -68,29 +68,29 @@ struct Object {
struct Scene { struct Scene {
std::vector<std::unique_ptr<Object>> objects; std::vector<std::unique_ptr<Object>> objects;
std::random_device rd; std::random_device rd;
std::mt19937 gen; std::mt19937 gen;
std::uniform_real_distribution<> dis; std::uniform_real_distribution<> dis;
Scene() : gen(rd()), dis(0.0, 1.0) {} Scene() : gen(rd()), dis(0.0, 1.0) {}
float distribution() { float distribution() {
return dis(gen); return dis(gen);
} }
Object& load_from_file(const std::string_view path) { Object& load_from_file(const std::string_view path) {
auto o = std::make_unique<Object>(); auto o = std::make_unique<Object>();
std::string err; std::string err;
if(!tinyobj::LoadObj(&o->attrib, &o->shapes, &o->materials, &err, path.data())) if (!tinyobj::LoadObj(&o->attrib, &o->shapes, &o->materials, &err, path.data()))
std::cerr << "Could not load obj: " << err; std::cerr << "Could not load obj: " << err;
return *objects.emplace_back(std::move(o)); return *objects.emplace_back(std::move(o));
} }
void generate_acceleration() { void generate_acceleration() {
for(auto& object : objects) { for (auto& object : objects) {
object->create_octree(); object->create_octree();
} }
} }
@ -111,4 +111,3 @@ struct SceneResult {
}; };
std::optional<SceneResult> cast_scene(const Ray ray, Scene& scene, const bool use_bvh, const int depth = 0); std::optional<SceneResult> cast_scene(const Ray ray, Scene& scene, const bool use_bvh, const int depth = 0);

View file

@ -1,23 +1,23 @@
#include <iostream>
#include <limits>
#include <future>
#include <vector>
#include <glm/glm.hpp>
#include <SDL.h> #include <SDL.h>
#include <array> #include <array>
#include <future>
#include <glm/glm.hpp>
#include <iostream>
#include <limits>
#include <vector>
#define STB_IMAGE_WRITE_IMPLEMENTATION #define STB_IMAGE_WRITE_IMPLEMENTATION
#include <stb_image_write.h> #include <stb_image_write.h>
#include "intersections.h"
#include "camera.h" #include "camera.h"
#include "glad/glad.h"
#include "image.h" #include "image.h"
#include "imgui.h"
#include "imgui_impl_opengl3.h"
#include "imgui_impl_sdl.h"
#include "intersections.h"
#include "lighting.h" #include "lighting.h"
#include "scene.h" #include "scene.h"
#include "glad/glad.h"
#include "imgui.h"
#include "imgui_impl_sdl.h"
#include "imgui_impl_opengl3.h"
#define TINYOBJLOADER_IMPLEMENTATION #define TINYOBJLOADER_IMPLEMENTATION
#include <tiny_obj_loader.h> #include <tiny_obj_loader.h>
@ -29,7 +29,7 @@ bool use_bvh = true;
const Camera camera = [] { const Camera camera = [] {
Camera camera; Camera camera;
camera.look_at(glm::vec3(0, 0, 3), glm::vec3(0)); camera.look_at(glm::vec3(0, 0, 3), glm::vec3(0));
return camera; return camera;
}(); }();
@ -50,23 +50,18 @@ enum class DisplayMode {
Reflect Reflect
}; };
const std::array diplay_mode_strings = { const std::array diplay_mode_strings = {"Combined", "Direct", "Indirect", "Reflect"};
"Combined",
"Direct",
"Indirect",
"Reflect"
};
inline DisplayMode display_mode; inline DisplayMode display_mode;
bool calculate_tile(const int32_t from_x, const int32_t to_width, const int32_t from_y, const int32_t to_height) { bool calculate_tile(const int32_t from_x, const int32_t to_width, const int32_t from_y, const int32_t to_height) {
for(int32_t y = from_y; y < (from_y + to_height); y++) { for (int32_t y = from_y; y < (from_y + to_height); y++) {
for(int32_t x = from_x; x < (from_x + to_width); x++) { for (int32_t x = from_x; x < (from_x + to_width); x++) {
Ray ray_camera = camera.get_ray(x, y, width, height); Ray ray_camera = camera.get_ray(x, y, width, height);
if(auto result = cast_scene(ray_camera, scene, use_bvh)) { if (auto result = cast_scene(ray_camera, scene, use_bvh)) {
glm::vec3 chosen_display; glm::vec3 chosen_display;
switch(display_mode) { switch (display_mode) {
case DisplayMode::Combined: case DisplayMode::Combined:
chosen_display = result->combined; chosen_display = result->combined;
break; break;
@ -80,14 +75,14 @@ bool calculate_tile(const int32_t from_x, const int32_t to_width, const int32_t
chosen_display = result->reflect; chosen_display = result->reflect;
break; break;
} }
colors.get(x, y) = glm::vec4(chosen_display, 1.0f); colors.get(x, y) = glm::vec4(chosen_display, 1.0f);
image_dirty = true; image_dirty = true;
} }
} }
} }
return true; return true;
} }
@ -98,76 +93,70 @@ GLuint pixels_texture = 0;
void setup_gfx() { void setup_gfx() {
// create quad for pixel rendering // create quad for pixel rendering
constexpr std::array vertices = { constexpr std::array vertices = {
-0.5f, 0.5f, 0.0f, 0.0f, 0.0f, -0.5f, 0.5f, 0.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.5f,
0.5f, 0.5f, 0.0f, 1.0f, 0.0f, -0.5f, 0.0f, 1.0f, -1.0f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f // we render it upside down (to opengl) so we flip our
0.5f, -0.5f, 0.0f, 1.0f, -1.0f, // tex coord
-0.5f, -0.5f, 0.0f, 0.0f, -1.0f // we render it upside down (to opengl) so we flip our tex coord
}; };
constexpr std::array elements = { constexpr std::array elements = {0, 1, 2, 2, 3, 0};
0, 1, 2,
2, 3, 0
};
glGenVertexArrays(1, &quad_vao); glGenVertexArrays(1, &quad_vao);
glBindVertexArray(quad_vao); glBindVertexArray(quad_vao);
GLuint vbo = 0; GLuint vbo = 0;
glGenBuffers(1, &vbo); glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(float), vertices.data(), GL_STATIC_DRAW); glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(float), vertices.data(), GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), nullptr); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), nullptr);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), reinterpret_cast<void*>(3 * sizeof(float))); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), reinterpret_cast<void*>(3 * sizeof(float)));
glEnableVertexAttribArray(0); glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1); glEnableVertexAttribArray(1);
GLuint ebo = 0; GLuint ebo = 0;
glGenBuffers(1, &ebo); glGenBuffers(1, &ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, elements.size() * sizeof(uint32_t), elements.data(), GL_STATIC_DRAW); glBufferData(GL_ELEMENT_ARRAY_BUFFER, elements.size() * sizeof(uint32_t), elements.data(), GL_STATIC_DRAW);
constexpr std::string_view vertex_glsl = constexpr std::string_view vertex_glsl = "#version 330 core\n"
"#version 330 core\n" "layout (location = 0) in vec3 in_position;\n"
"layout (location = 0) in vec3 in_position;\n" "layout (location = 1) in vec2 in_uv;\n"
"layout (location = 1) in vec2 in_uv;\n" "out vec2 uv;\n"
"out vec2 uv;\n" "void main()\n"
"void main()\n" "{\n"
"{\n" " gl_Position = vec4(in_position.xyz, 1.0);\n"
" gl_Position = vec4(in_position.xyz, 1.0);\n" " uv = in_uv;\n"
" uv = in_uv;\n" "}\n";
"}\n";
const char* vertex_src = vertex_glsl.data(); const char* vertex_src = vertex_glsl.data();
constexpr std::string_view fragment_glsl = constexpr std::string_view fragment_glsl = "#version 330 core\n"
"#version 330 core\n" "in vec2 uv;\n"
"in vec2 uv;\n" "out vec4 out_color;\n"
"out vec4 out_color;\n" "uniform sampler2D pixel_texture;\n"
"uniform sampler2D pixel_texture;\n" "void main()\n"
"void main()\n" "{\n"
"{\n" " out_color = texture(pixel_texture, uv);\n"
" out_color = texture(pixel_texture, uv);\n" "}\n";
"}\n";
const char* fragment_src = fragment_glsl.data(); const char* fragment_src = fragment_glsl.data();
GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER); GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader, 1, &vertex_src, nullptr); glShaderSource(vertex_shader, 1, &vertex_src, nullptr);
glCompileShader(vertex_shader); glCompileShader(vertex_shader);
GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER); GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader, 1, &fragment_src, nullptr); glShaderSource(fragment_shader, 1, &fragment_src, nullptr);
glCompileShader(fragment_shader); glCompileShader(fragment_shader);
pixel_program = glCreateProgram(); pixel_program = glCreateProgram();
glAttachShader(pixel_program, vertex_shader); glAttachShader(pixel_program, vertex_shader);
glAttachShader(pixel_program, fragment_shader); glAttachShader(pixel_program, fragment_shader);
glLinkProgram(pixel_program); glLinkProgram(pixel_program);
glDeleteShader(vertex_shader); glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader); glDeleteShader(fragment_shader);
glGenTextures(1, &pixels_texture); glGenTextures(1, &pixels_texture);
glBindTexture(GL_TEXTURE_2D, pixels_texture); glBindTexture(GL_TEXTURE_2D, pixels_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
@ -187,9 +176,9 @@ std::vector<std::future<bool>> futures;
void render() { void render() {
futures.clear(); futures.clear();
colors.reset(); colors.reset();
for(int32_t y = 0; y < num_tiles_y; y++) { for (int32_t y = 0; y < num_tiles_y; y++) {
for(int32_t x = 0; x < num_tiles_x; x++) { for (int32_t x = 0; x < num_tiles_x; x++) {
auto f = std::async(std::launch::async, calculate_tile, x * tile_size, tile_size, y * tile_size, tile_size); auto f = std::async(std::launch::async, calculate_tile, x * tile_size, tile_size, y * tile_size, tile_size);
futures.push_back(std::move(f)); futures.push_back(std::move(f));
} }
@ -198,10 +187,10 @@ void render() {
void dump_to_file() { void dump_to_file() {
uint8_t pixels[width * height * 3] = {}; uint8_t pixels[width * height * 3] = {};
int i = 0; int i = 0;
for(int32_t y = height - 1; y >= 0; y--) { for (int32_t y = height - 1; y >= 0; y--) {
for(int32_t x = 0; x < width; x++) { for (int32_t x = 0; x < width; x++) {
const glm::ivec4 c = colors.get(x, y); const glm::ivec4 c = colors.get(x, y);
pixels[i++] = c.r; pixels[i++] = c.r;
pixels[i++] = c.g; pixels[i++] = c.g;
@ -212,17 +201,24 @@ void dump_to_file() {
stbi_write_png("output.png", width, height, 3, pixels, width * 3); stbi_write_png("output.png", width, height, 3, pixels, width * 3);
} }
template<typename UnderlyingType> template<typename UnderlyingType> void walk_node(Node<UnderlyingType>& node) {
void walk_node(Node<UnderlyingType>& node) { if (ImGui::TreeNode(
if(ImGui::TreeNode(&node, "min: (%f %f %f)\n max: (%f %f %f)", node.extent.min.x, node.extent.min.y, node.extent.min.z, node.extent.max.x, node.extent.max.y, node.extent.max.z)) { &node,
"min: (%f %f %f)\n max: (%f %f %f)",
node.extent.min.x,
node.extent.min.y,
node.extent.min.z,
node.extent.max.x,
node.extent.max.y,
node.extent.max.z)) {
ImGui::Text("Is split: %i", node.is_split); ImGui::Text("Is split: %i", node.is_split);
ImGui::Text("Contained triangles: %lu", node.contained_objects.size()); ImGui::Text("Contained triangles: %lu", node.contained_objects.size());
if(node.is_split) { if (node.is_split) {
for(auto& child : node.children) for (auto& child : node.children)
walk_node(*child); walk_node(*child);
} }
ImGui::TreePop(); ImGui::TreePop();
} }
} }
@ -233,104 +229,105 @@ void walk_object(Object& object) {
int main(int, char*[]) { int main(int, char*[]) {
SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER); SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3); SDL_GL_SetAttribute(SDL_GL_CONTEXT_MAJOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 3); SDL_GL_SetAttribute(SDL_GL_CONTEXT_MINOR_VERSION, 3);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG); SDL_GL_SetAttribute(SDL_GL_CONTEXT_FLAGS, SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG);
SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE); SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_CORE);
SDL_Window* window = SDL_CreateWindow("raytracer", SDL_Window* window = SDL_CreateWindow(
SDL_WINDOWPOS_CENTERED, "raytracer",
SDL_WINDOWPOS_CENTERED, SDL_WINDOWPOS_CENTERED,
800, SDL_WINDOWPOS_CENTERED,
600, 800,
SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE); 600,
SDL_WINDOW_OPENGL | SDL_WINDOW_RESIZABLE);
SDL_GLContext gl_context = SDL_GL_CreateContext(window); SDL_GLContext gl_context = SDL_GL_CreateContext(window);
SDL_GL_MakeCurrent(window, gl_context); SDL_GL_MakeCurrent(window, gl_context);
SDL_GL_SetSwapInterval(1); SDL_GL_SetSwapInterval(1);
gladLoadGL(); gladLoadGL();
setup_gfx(); setup_gfx();
ImGui::CreateContext(); ImGui::CreateContext();
ImGui::StyleColorsDark(); ImGui::StyleColorsDark();
ImGui_ImplSDL2_InitForOpenGL(window, gl_context); ImGui_ImplSDL2_InitForOpenGL(window, gl_context);
ImGui_ImplOpenGL3_Init("#version 330 core"); ImGui_ImplOpenGL3_Init("#version 330 core");
bool running = true; bool running = true;
while(running) { while (running) {
SDL_Event event = {}; SDL_Event event = {};
while(SDL_PollEvent(&event)) { while (SDL_PollEvent(&event)) {
ImGui_ImplSDL2_ProcessEvent(&event); ImGui_ImplSDL2_ProcessEvent(&event);
if(event.type == SDL_QUIT) if (event.type == SDL_QUIT)
running = false; running = false;
} }
ImGui_ImplOpenGL3_NewFrame(); ImGui_ImplOpenGL3_NewFrame();
ImGui_ImplSDL2_NewFrame(window); ImGui_ImplSDL2_NewFrame(window);
ImGui::NewFrame(); ImGui::NewFrame();
if(ImGui::BeginMainMenuBar()) { if (ImGui::BeginMainMenuBar()) {
if(ImGui::BeginMenu("File")) { if (ImGui::BeginMenu("File")) {
if(ImGui::Button("Load Example Models")) { if (ImGui::Button("Load Example Models")) {
auto& sphere = scene.load_from_file("misc/sphere.obj"); auto& sphere = scene.load_from_file("misc/sphere.obj");
sphere.color = {1, 1, 1}; sphere.color = {1, 1, 1};
auto& plane = scene.load_from_file("misc/plane.obj"); auto& plane = scene.load_from_file("misc/plane.obj");
plane.position.y = -1; plane.position.y = -1;
plane.color = {1, 0, 0}; plane.color = {1, 0, 0};
scene.generate_acceleration(); scene.generate_acceleration();
} }
ImGui::EndMenu(); ImGui::EndMenu();
} }
ImGui::EndMainMenuBar(); ImGui::EndMainMenuBar();
} }
ImGui::Begin("Render Options"); ImGui::Begin("Render Options");
ImGui::Checkbox("Use BVH", &use_bvh); ImGui::Checkbox("Use BVH", &use_bvh);
ImGui::InputInt("Indirect Samples", &num_indirect_samples); ImGui::InputInt("Indirect Samples", &num_indirect_samples);
if(ImGui::BeginCombo("Channel Selection", diplay_mode_strings[static_cast<int>(display_mode)])) { if (ImGui::BeginCombo("Channel Selection", diplay_mode_strings[static_cast<int>(display_mode)])) {
if(ImGui::Selectable("Combined")) if (ImGui::Selectable("Combined"))
display_mode = DisplayMode::Combined; display_mode = DisplayMode::Combined;
if(ImGui::Selectable("Direct")) if (ImGui::Selectable("Direct"))
display_mode = DisplayMode::Direct; display_mode = DisplayMode::Direct;
if(ImGui::Selectable("Indirect")) if (ImGui::Selectable("Indirect"))
display_mode = DisplayMode::Indirect; display_mode = DisplayMode::Indirect;
if(ImGui::Selectable("Reflect")) if (ImGui::Selectable("Reflect"))
display_mode = DisplayMode::Reflect; display_mode = DisplayMode::Reflect;
ImGui::EndCombo(); ImGui::EndCombo();
} }
if(ImGui::Button("Render")) if (ImGui::Button("Render"))
render(); render();
ImGui::SameLine(); ImGui::SameLine();
if(ImGui::Button("Save Output")) if (ImGui::Button("Save Output"))
dump_to_file(); dump_to_file();
if(image_dirty) { if (image_dirty) {
update_texture(); update_texture();
image_dirty = false; image_dirty = false;
} }
for(auto& object : scene.objects) { for (auto& object : scene.objects) {
if(ImGui::TreeNode("Object")) { if (ImGui::TreeNode("Object")) {
walk_object(*object); walk_object(*object);
ImGui::TreePop(); ImGui::TreePop();
} }
} }
@ -338,18 +335,18 @@ int main(int, char*[]) {
ImGui::End(); ImGui::End();
ImGui::Render(); ImGui::Render();
auto& io = ImGui::GetIO(); auto& io = ImGui::GetIO();
glViewport(0, 0, (int)io.DisplaySize.x, (int)io.DisplaySize.y); glViewport(0, 0, (int)io.DisplaySize.x, (int)io.DisplaySize.y);
glClear(GL_COLOR_BUFFER_BIT); glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(pixel_program); glUseProgram(pixel_program);
glBindVertexArray(quad_vao); glBindVertexArray(quad_vao);
glBindTexture(GL_TEXTURE_2D, pixels_texture); glBindTexture(GL_TEXTURE_2D, pixels_texture);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0); glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData()); ImGui_ImplOpenGL3_RenderDrawData(ImGui::GetDrawData());
SDL_GL_SwapWindow(window); SDL_GL_SwapWindow(window);
} }

View file

@ -1,48 +1,55 @@
#include "scene.h" #include "scene.h"
#include <glm/gtx/perpendicular.hpp>
#include <functional> #include <functional>
#include <glm/gtx/perpendicular.hpp>
constexpr double pi = 3.14159265358979323846l; constexpr double pi = 3.14159265358979323846l;
glm::vec3 fetch_position(const Object& object, const tinyobj::mesh_t& mesh, const int32_t index, const int32_t vertex) { glm::vec3 fetch_position(const Object& object, const tinyobj::mesh_t& mesh, const int32_t index, const int32_t vertex) {
const tinyobj::index_t idx = mesh.indices[(index * 3) + vertex]; const tinyobj::index_t idx = mesh.indices[(index * 3) + vertex];
const auto vx = object.attrib.vertices[3 * idx.vertex_index]; const auto vx = object.attrib.vertices[3 * idx.vertex_index];
const auto vy = object.attrib.vertices[3 * idx.vertex_index + 1]; const auto vy = object.attrib.vertices[3 * idx.vertex_index + 1];
const auto vz = object.attrib.vertices[3 * idx.vertex_index + 2]; const auto vz = object.attrib.vertices[3 * idx.vertex_index + 2];
return glm::vec3(vx, vy, vz); return glm::vec3(vx, vy, vz);
} }
glm::vec3 fetch_normal(const Object& object, const tinyobj::mesh_t& mesh, const int32_t index, const int32_t vertex) { glm::vec3 fetch_normal(const Object& object, const tinyobj::mesh_t& mesh, const int32_t index, const int32_t vertex) {
const tinyobj::index_t idx = mesh.indices[(index * 3) + vertex]; const tinyobj::index_t idx = mesh.indices[(index * 3) + vertex];
const auto nx = object.attrib.normals[3 * idx.normal_index]; const auto nx = object.attrib.normals[3 * idx.normal_index];
const auto ny = object.attrib.normals[3 * idx.normal_index + 1]; const auto ny = object.attrib.normals[3 * idx.normal_index + 1];
const auto nz = object.attrib.normals[3 * idx.normal_index + 2]; const auto nz = object.attrib.normals[3 * idx.normal_index + 2];
return glm::vec3(nx, ny, nz); return glm::vec3(nx, ny, nz);
} }
bool test_triangle(const Ray ray, const Object& object, const tinyobj::mesh_t& mesh, const size_t i, float& tClosest, bool& intersection, HitResult& result) { bool test_triangle(
const Ray ray,
const Object& object,
const tinyobj::mesh_t& mesh,
const size_t i,
float& tClosest,
bool& intersection,
HitResult& result) {
const glm::vec3 v0 = fetch_position(object, mesh, i, 0) + object.position; const glm::vec3 v0 = fetch_position(object, mesh, i, 0) + object.position;
const glm::vec3 v1 = fetch_position(object, mesh, i, 1) + object.position; const glm::vec3 v1 = fetch_position(object, mesh, i, 1) + object.position;
const glm::vec3 v2 = fetch_position(object, mesh, i, 2) + object.position; const glm::vec3 v2 = fetch_position(object, mesh, i, 2) + object.position;
float t = std::numeric_limits<float>::infinity(), u, v; float t = std::numeric_limits<float>::infinity(), u, v;
if(intersections::ray_triangle(ray, v0, v1, v2, t, u, v)) { if (intersections::ray_triangle(ray, v0, v1, v2, t, u, v)) {
if(t < tClosest && t > epsilon) { if (t < tClosest && t > epsilon) {
const glm::vec3 n0 = fetch_normal(object, mesh, i, 0); const glm::vec3 n0 = fetch_normal(object, mesh, i, 0);
const glm::vec3 n1 = fetch_normal(object, mesh, i, 1); const glm::vec3 n1 = fetch_normal(object, mesh, i, 1);
const glm::vec3 n2 = fetch_normal(object, mesh, i, 2); const glm::vec3 n2 = fetch_normal(object, mesh, i, 2);
result.normal = (1 - u - v) * n0 + u * n1 + v * n2; result.normal = (1 - u - v) * n0 + u * n1 + v * n2;
result.position = ray.origin + ray.direction * t; result.position = ray.origin + ray.direction * t;
tClosest = t; tClosest = t;
intersection = true; intersection = true;
return true; return true;
} }
} }
@ -51,30 +58,30 @@ bool test_triangle(const Ray ray, const Object& object, const tinyobj::mesh_t& m
std::optional<HitResult> test_mesh(const Ray ray, const Object& object, const tinyobj::mesh_t& mesh, float& tClosest) { std::optional<HitResult> test_mesh(const Ray ray, const Object& object, const tinyobj::mesh_t& mesh, float& tClosest) {
bool intersection = false; bool intersection = false;
HitResult result = {}; HitResult result = {};
for(size_t i = 0; i < mesh.num_face_vertices.size(); i++) { for (size_t i = 0; i < mesh.num_face_vertices.size(); i++) {
const glm::vec3 v0 = fetch_position(object, mesh, i, 0) + object.position; const glm::vec3 v0 = fetch_position(object, mesh, i, 0) + object.position;
const glm::vec3 v1 = fetch_position(object, mesh, i, 1) + object.position; const glm::vec3 v1 = fetch_position(object, mesh, i, 1) + object.position;
const glm::vec3 v2 = fetch_position(object, mesh, i, 2) + object.position; const glm::vec3 v2 = fetch_position(object, mesh, i, 2) + object.position;
float t = std::numeric_limits<float>::infinity(), u, v; float t = std::numeric_limits<float>::infinity(), u, v;
if(intersections::ray_triangle(ray, v0, v1, v2, t, u, v)) { if (intersections::ray_triangle(ray, v0, v1, v2, t, u, v)) {
if(t < tClosest && t > epsilon) { if (t < tClosest && t > epsilon) {
const glm::vec3 n0 = fetch_normal(object, mesh, i, 0); const glm::vec3 n0 = fetch_normal(object, mesh, i, 0);
const glm::vec3 n1 = fetch_normal(object, mesh, i, 1); const glm::vec3 n1 = fetch_normal(object, mesh, i, 1);
const glm::vec3 n2 = fetch_normal(object, mesh, i, 2); const glm::vec3 n2 = fetch_normal(object, mesh, i, 2);
result.normal = (1 - u - v) * n0 + u * n1 + v * n2; result.normal = (1 - u - v) * n0 + u * n1 + v * n2;
result.position = ray.origin + ray.direction * t; result.position = ray.origin + ray.direction * t;
tClosest = t; tClosest = t;
intersection = true; intersection = true;
} }
} }
} }
if(intersection) if (intersection)
return result; return result;
else else
return {}; return {};
@ -84,30 +91,29 @@ std::optional<HitResult> test_scene(const Ray ray, const Scene& scene) {
bool intersection = false; bool intersection = false;
HitResult result = {}; HitResult result = {};
float tClosest = std::numeric_limits<float>::infinity(); float tClosest = std::numeric_limits<float>::infinity();
for(auto& object : scene.objects) { for (auto& object : scene.objects) {
for(uint32_t i = 0; i < object->shapes.size(); i++) { for (uint32_t i = 0; i < object->shapes.size(); i++) {
auto mesh = object->shapes[i].mesh; auto mesh = object->shapes[i].mesh;
if(const auto hit = test_mesh(ray, *object, mesh, tClosest)) { if (const auto hit = test_mesh(ray, *object, mesh, tClosest)) {
intersection = true; intersection = true;
result = hit.value(); result = hit.value();
result.object = object.get(); result.object = object.get();
} }
} }
} }
if(intersection) if (intersection)
return result; return result;
else else
return {}; return {};
} }
template<typename T> template<typename T> Node<T>* find_hit_ray_search(Node<T>& node, const Ray ray, std::vector<Node<T>*>* out) {
Node<T>* find_hit_ray_search(Node<T>& node, const Ray ray, std::vector<Node<T>*>* out) { if (node.extent.contains(ray)) {
if(node.extent.contains(ray)) { if (node.is_split) {
if(node.is_split) { for (auto& child : node.children)
for(auto& child : node.children)
find_hit_ray_search(*child, ray, out); find_hit_ray_search(*child, ray, out);
} else { } else {
out->push_back(&node); out->push_back(&node);
@ -117,12 +123,11 @@ Node<T>* find_hit_ray_search(Node<T>& node, const Ray ray, std::vector<Node<T>*>
return nullptr; return nullptr;
} }
template<typename T> template<typename T> std::vector<Node<T>*> find_hit_ray(Node<T>& node, const Ray ray) {
std::vector<Node<T>*> find_hit_ray(Node<T>& node, const Ray ray) {
std::vector<Node<T>*> vec; std::vector<Node<T>*> vec;
find_hit_ray_search(node, ray, &vec); find_hit_ray_search(node, ray, &vec);
return vec; return vec;
} }
@ -130,17 +135,24 @@ std::optional<HitResult> test_scene_octree(const Ray ray, const Scene& scene) {
bool intersection = false; bool intersection = false;
HitResult result = {}; HitResult result = {};
float tClosest = std::numeric_limits<float>::infinity(); float tClosest = std::numeric_limits<float>::infinity();
for(auto& object : scene.objects) { for (auto& object : scene.objects) {
for(auto& node : find_hit_ray(object->octree->root, ray)) { for (auto& node : find_hit_ray(object->octree->root, ray)) {
for(auto& triangle_object : node->contained_objects) { for (auto& triangle_object : node->contained_objects) {
if(test_triangle(ray, *object, *triangle_object.mesh, triangle_object.vertice_index, tClosest, intersection, result)) if (test_triangle(
ray,
*object,
*triangle_object.mesh,
triangle_object.vertice_index,
tClosest,
intersection,
result))
result.object = object.get(); result.object = object.get();
} }
} }
} }
if(intersection) if (intersection)
return result; return result;
else else
return {}; return {};
@ -149,7 +161,7 @@ std::optional<HitResult> test_scene_octree(const Ray ray, const Scene& scene) {
// methods adapated from https://users.cg.tuwien.ac.at/zsolnai/gfx/smallpaint/ // methods adapated from https://users.cg.tuwien.ac.at/zsolnai/gfx/smallpaint/
std::tuple<glm::vec3, glm::vec3> orthogonal_system(const glm::vec3& v1) { std::tuple<glm::vec3, glm::vec3> orthogonal_system(const glm::vec3& v1) {
glm::vec3 v2; glm::vec3 v2;
if(glm::abs(v1.x) > glm::abs(v1.y)) { if (glm::abs(v1.x) > glm::abs(v1.y)) {
// project to the y = 0 plane and construct a normalized orthogonal vector in this plane // project to the y = 0 plane and construct a normalized orthogonal vector in this plane
const float inverse_length = 1.0f / sqrtf(v1.x * v1.x + v1.z * v1.z); const float inverse_length = 1.0f / sqrtf(v1.x * v1.x + v1.z * v1.z);
v2 = glm::vec3(-v1.z * inverse_length, 0.0f, v1.x * inverse_length); v2 = glm::vec3(-v1.z * inverse_length, 0.0f, v1.x * inverse_length);
@ -158,14 +170,14 @@ std::tuple<glm::vec3, glm::vec3> orthogonal_system(const glm::vec3& v1) {
const float inverse_length = 1.0f / sqrtf(v1.y * v1.y + v1.z * v1.z); const float inverse_length = 1.0f / sqrtf(v1.y * v1.y + v1.z * v1.z);
v2 = glm::vec3(0.0f, v1.z * inverse_length, -v1.y * inverse_length); v2 = glm::vec3(0.0f, v1.z * inverse_length, -v1.y * inverse_length);
} }
return {v2, glm::cross(v1, v2)}; return {v2, glm::cross(v1, v2)};
} }
glm::vec3 hemisphere(const double u1, const double u2) { glm::vec3 hemisphere(const double u1, const double u2) {
const double r = sqrt(1.0 - u1 * u1); const double r = sqrt(1.0 - u1 * u1);
const double phi = 2 * pi * u2; const double phi = 2 * pi * u2;
return glm::vec3(cos(phi) * r, sin(phi) * r, u1); return glm::vec3(cos(phi) * r, sin(phi) * r, u1);
} }
@ -174,58 +186,58 @@ glm::vec3 reflect(const glm::vec3& I, const glm::vec3& N) {
} }
std::optional<SceneResult> cast_scene(const Ray ray, Scene& scene, const bool use_bvh, const int depth) { std::optional<SceneResult> cast_scene(const Ray ray, Scene& scene, const bool use_bvh, const int depth) {
if(depth > max_depth) if (depth > max_depth)
return {}; return {};
const std::function<decltype(test_scene)> scene_func = use_bvh ? test_scene_octree : test_scene; const std::function<decltype(test_scene)> scene_func = use_bvh ? test_scene_octree : test_scene;
if(auto hit = scene_func(ray, scene)) { if (auto hit = scene_func(ray, scene)) {
const float diffuse = lighting::point_light(hit->position, light_position, hit->normal); const float diffuse = lighting::point_light(hit->position, light_position, hit->normal);
SceneResult result = {}; SceneResult result = {};
// direct lighting calculation // direct lighting calculation
// currently only supports only one light (directional) // currently only supports only one light (directional)
if(glm::dot(light_position - hit->position, hit->normal) > 0) { if (glm::dot(light_position - hit->position, hit->normal) > 0) {
const glm::vec3 light_dir = glm::normalize(light_position - hit->position); const glm::vec3 light_dir = glm::normalize(light_position - hit->position);
const Ray shadow_ray(hit->position + (hit->normal * light_bias), light_dir); const Ray shadow_ray(hit->position + (hit->normal * light_bias), light_dir);
const float shadow = scene_func(shadow_ray, scene) ? 0.0f : 1.0f; const float shadow = scene_func(shadow_ray, scene) ? 0.0f : 1.0f;
result.direct = hit->object->color * diffuse * shadow; result.direct = hit->object->color * diffuse * shadow;
} }
if(auto reflect_result = cast_scene(Ray(hit->position, glm::reflect(ray.direction, hit->normal)), scene, use_bvh, depth + 1)) if (auto reflect_result =
cast_scene(Ray(hit->position, glm::reflect(ray.direction, hit->normal)), scene, use_bvh, depth + 1))
result.reflect = reflect_result->combined; result.reflect = reflect_result->combined;
// indirect lighting calculation // indirect lighting calculation
// we take a hemisphere orthogonal to the normal, and take a constant number of num_indirect_samples // we take a hemisphere orthogonal to the normal, and take a constant number of num_indirect_samples
// and naive monte carlo without PDF // and naive monte carlo without PDF
if(num_indirect_samples > 0) { if (num_indirect_samples > 0) {
for(int i = 0; i < num_indirect_samples; i++) { for (int i = 0; i < num_indirect_samples; i++) {
const float theta = scene.distribution() * pi; const float theta = scene.distribution() * pi;
const float cos_theta = cos(theta); const float cos_theta = cos(theta);
const float sin_theta = sin(theta); const float sin_theta = sin(theta);
const auto [rotX, rotY] = orthogonal_system(hit->normal); const auto [rotX, rotY] = orthogonal_system(hit->normal);
const glm::vec3 sampled_dir = hemisphere(cos_theta, sin_theta); const glm::vec3 sampled_dir = hemisphere(cos_theta, sin_theta);
const glm::vec3 rotated_dir = { const glm::vec3 rotated_dir = {
glm::dot({rotX.x, rotY.x, hit->normal.x}, sampled_dir), glm::dot({rotX.x, rotY.x, hit->normal.x}, sampled_dir),
glm::dot({rotX.y, rotY.y, hit->normal.y}, sampled_dir), glm::dot({rotX.y, rotY.y, hit->normal.y}, sampled_dir),
glm::dot({rotX.z, rotY.z, hit->normal.z}, sampled_dir) glm::dot({rotX.z, rotY.z, hit->normal.z}, sampled_dir)};
};
if (const auto indirect_result = cast_scene(Ray(ray.origin, rotated_dir), scene, use_bvh, depth + 1))
if(const auto indirect_result = cast_scene(Ray(ray.origin, rotated_dir), scene, use_bvh, depth + 1))
result.indirect += indirect_result->combined * cos_theta; result.indirect += indirect_result->combined * cos_theta;
} }
result.indirect /= num_indirect_samples; result.indirect /= num_indirect_samples;
} }
result.hit = *hit; result.hit = *hit;
result.combined = (result.indirect + result.direct + result.reflect); result.combined = (result.indirect + result.direct + result.reflect);
return result; return result;
} else { } else {
return {}; return {};