Add indirect sampling, and update README
This commit is contained in:
parent
35159a93b2
commit
efd466fc78
4 changed files with 107 additions and 38 deletions
|
@ -19,7 +19,7 @@ public:
|
|||
const float h2 = height / 2.0f;
|
||||
const float w2 = width / 2.0f;
|
||||
|
||||
glm::vec3 ray_dir = position + (h2 / tan(glm::radians(fov) / 2)) * direction + (y - h2) * up + (float)(x - w2) * right;
|
||||
const glm::vec3 ray_dir = position + (h2 / tan(glm::radians(fov) / 2)) * direction + (y - h2) * up + static_cast<float>(x - w2) * right;
|
||||
return Ray(position, ray_dir);
|
||||
}
|
||||
|
||||
|
|
114
include/scene.h
114
include/scene.h
|
@ -6,6 +6,7 @@
|
|||
|
||||
struct Object {
|
||||
glm::vec3 position = glm::vec3(0);
|
||||
glm::vec3 color = glm::vec3(1);
|
||||
|
||||
tinyobj::attrib_t attrib;
|
||||
std::vector<tinyobj::shape_t> shapes;
|
||||
|
@ -25,42 +26,42 @@ struct Scene {
|
|||
};
|
||||
|
||||
inline glm::vec3 fetch_position(const Object& object, const tinyobj::mesh_t& mesh, const int32_t index, const int32_t vertex) {
|
||||
tinyobj::index_t idx = mesh.indices[(index * 3) +vertex];
|
||||
const tinyobj::index_t idx = mesh.indices[(index * 3) +vertex];
|
||||
|
||||
tinyobj::real_t vx = object.attrib.vertices[3*idx.vertex_index+0];
|
||||
tinyobj::real_t vy = object.attrib.vertices[3*idx.vertex_index+1];
|
||||
tinyobj::real_t vz = object.attrib.vertices[3*idx.vertex_index+2];
|
||||
const auto vx = object.attrib.vertices[3*idx.vertex_index+0];
|
||||
const auto vy = object.attrib.vertices[3*idx.vertex_index+1];
|
||||
const auto vz = object.attrib.vertices[3*idx.vertex_index+2];
|
||||
|
||||
return glm::vec3(vx, vy, vz);
|
||||
}
|
||||
|
||||
inline glm::vec3 fetch_normal(const Object& object, const tinyobj::mesh_t& mesh, const int32_t index, const int32_t vertex) {
|
||||
tinyobj::index_t idx = mesh.indices[(index * 3) + vertex];
|
||||
const tinyobj::index_t idx = mesh.indices[(index * 3) + vertex];
|
||||
|
||||
tinyobj::real_t nx = object.attrib.normals[3*idx.normal_index+0];
|
||||
tinyobj::real_t ny = object.attrib.normals[3*idx.normal_index+1];
|
||||
tinyobj::real_t nz = object.attrib.normals[3*idx.normal_index+2];
|
||||
const auto nx = object.attrib.normals[3*idx.normal_index+0];
|
||||
const auto ny = object.attrib.normals[3*idx.normal_index+1];
|
||||
const auto nz = object.attrib.normals[3*idx.normal_index+2];
|
||||
|
||||
return glm::vec3(nx, ny, nz);
|
||||
}
|
||||
|
||||
struct HitResult {
|
||||
glm::vec3 position, normal;
|
||||
tinyobj::mesh_t* mesh = nullptr;
|
||||
Object object;
|
||||
};
|
||||
|
||||
std::optional<HitResult> test_mesh(const Ray ray, const Object& object, const tinyobj::mesh_t& mesh, float& tClosest) {
|
||||
bool intersection = false;
|
||||
HitResult result = {};
|
||||
|
||||
for (size_t i = 0; i < mesh.num_face_vertices.size(); i++) {
|
||||
for(size_t i = 0; i < mesh.num_face_vertices.size(); i++) {
|
||||
const glm::vec3 v0 = fetch_position(object, mesh, i, 0) + object.position;
|
||||
const glm::vec3 v1 = fetch_position(object, mesh, i, 1) + object.position;
|
||||
const glm::vec3 v2 = fetch_position(object, mesh, i, 2) + object.position;
|
||||
|
||||
float t = std::numeric_limits<float>::infinity(), u, v;
|
||||
if (intersections::ray_triangle(ray, v0, v1, v2, t, u, v)) {
|
||||
if (t < tClosest && t > epsilon) {
|
||||
if(intersections::ray_triangle(ray, v0, v1, v2, t, u, v)) {
|
||||
if(t < tClosest && t > epsilon) {
|
||||
const glm::vec3 n0 = fetch_normal(object, mesh, i, 0);
|
||||
const glm::vec3 n1 = fetch_normal(object, mesh, i, 1);
|
||||
const glm::vec3 n2 = fetch_normal(object, mesh, i, 2);
|
||||
|
@ -86,13 +87,13 @@ std::optional<HitResult> test_scene(const Ray ray, const Scene& scene, float tCl
|
|||
HitResult result = {};
|
||||
|
||||
for(auto& object : scene.objects) {
|
||||
for (uint32_t i = 0; i < object.shapes.size(); i++) {
|
||||
for(uint32_t i = 0; i < object.shapes.size(); i++) {
|
||||
auto mesh = object.shapes[i].mesh;
|
||||
|
||||
if(auto hit = test_mesh(ray, object, mesh, tClosest)) {
|
||||
if(const auto hit = test_mesh(ray, object, mesh, tClosest)) {
|
||||
intersection = true;
|
||||
result = hit.value();
|
||||
result.mesh = &mesh;
|
||||
result.object = object;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -102,3 +103,86 @@ std::optional<HitResult> test_scene(const Ray ray, const Scene& scene, float tCl
|
|||
else
|
||||
return {};
|
||||
}
|
||||
|
||||
constexpr glm::vec3 light_position = glm::vec3(5);
|
||||
constexpr float light_bias = 0.01f;
|
||||
constexpr int max_depth = 2;
|
||||
constexpr int num_indirect_samples = 4;
|
||||
|
||||
struct SceneResult {
|
||||
HitResult hit;
|
||||
glm::vec3 color, indirect;
|
||||
};
|
||||
|
||||
// methods adapated from https://users.cg.tuwien.ac.at/zsolnai/gfx/smallpaint/
|
||||
inline std::tuple<glm::vec3, glm::vec3> orthogonal_system(const glm::vec3& v1) {
|
||||
glm::vec3 v2;
|
||||
if(glm::abs(v1.x) > glm::abs(v1.y)) {
|
||||
// project to the y = 0 plane and construct a normalized orthogonal vector in this plane
|
||||
const float inverse_length = 1.0f / sqrtf(v1.x * v1.x + v1.z * v1.z);
|
||||
v2 = glm::vec3(-v1.z * inverse_length, 0.0f, v1.x * inverse_length);
|
||||
} else {
|
||||
// project to the x = 0 plane and construct a normalized orthogonal vector in this plane
|
||||
const float inverse_length = 1.0f / sqrtf(v1.y * v1.y + v1.z * v1.z);
|
||||
v2 = glm::vec3(0.0f, v1.z * inverse_length, -v1.y * inverse_length);
|
||||
}
|
||||
|
||||
return {v2, glm::cross(v1, v2)};
|
||||
}
|
||||
|
||||
glm::vec3 hemisphere(const double u1, const double u2) {
|
||||
const double r = sqrt(1.0 - u1 * u1);
|
||||
const double phi = 2 * M_PI * u2;
|
||||
|
||||
return glm::vec3(cos(phi) * r, sin(phi) * r, u1);
|
||||
}
|
||||
|
||||
std::optional<SceneResult> cast_scene(const Ray ray, const Scene& scene, const int depth = 0) {
|
||||
if(depth > max_depth)
|
||||
return {};
|
||||
|
||||
if(auto hit = test_scene(ray, scene)) {
|
||||
const float diffuse = lighting::point_light(hit->position, light_position, hit->normal);
|
||||
|
||||
//shadow calculation
|
||||
glm::vec3 direct(0);
|
||||
if(glm::dot(light_position - hit->position, hit->normal) > 0) {
|
||||
const glm::vec3 light_dir = glm::normalize(light_position - hit->position);
|
||||
|
||||
const Ray shadow_ray(hit->position + (hit->normal * light_bias), light_dir);
|
||||
|
||||
const float shadow = test_scene(shadow_ray, scene) ? 0.0f : 1.0f;
|
||||
|
||||
direct = diffuse * shadow * glm::vec3(1);
|
||||
}
|
||||
|
||||
glm::vec3 indirect(0);
|
||||
for(int i = 0; i < num_indirect_samples; i++) {
|
||||
const float theta = drand48() * M_PI;
|
||||
const float cos_theta = cos(theta);
|
||||
const float sin_theta = sin(theta);
|
||||
|
||||
const auto [rotX, rotY] = orthogonal_system(hit->normal);
|
||||
|
||||
const glm::vec3 sampled_dir = hemisphere(cos_theta, sin_theta);
|
||||
const glm::vec3 rotated_dir = {
|
||||
glm::dot({rotX.x, rotY.x, hit->normal.x}, sampled_dir),
|
||||
glm::dot({rotX.y, rotY.y, hit->normal.y}, sampled_dir),
|
||||
glm::dot({rotX.z, rotY.z, hit->normal.z}, sampled_dir)
|
||||
};
|
||||
|
||||
if(const auto indirect_result = cast_scene(Ray(ray.origin, rotated_dir), scene, depth + 1))
|
||||
indirect += indirect_result->color * cos_theta;
|
||||
}
|
||||
indirect /= num_indirect_samples;
|
||||
|
||||
SceneResult result = {};
|
||||
result.hit = *hit;
|
||||
result.color = (indirect + direct) * hit->object.color;
|
||||
result.indirect = indirect;
|
||||
|
||||
return result;
|
||||
} else {
|
||||
return {};
|
||||
}
|
||||
}
|
||||
|
|
BIN
misc/output.png
BIN
misc/output.png
Binary file not shown.
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 36 KiB |
29
src/main.cpp
29
src/main.cpp
|
@ -23,18 +23,16 @@
|
|||
#include <tiny_obj_loader.h>
|
||||
|
||||
// scene information
|
||||
constexpr int32_t width = 512, height = 512;
|
||||
constexpr glm::vec3 light_position = glm::vec3(5);
|
||||
constexpr int32_t width = 128, height = 128;
|
||||
|
||||
const Camera camera = [] {
|
||||
Camera camera;
|
||||
camera.look_at(glm::vec3(0, 0, 4), glm::vec3(0));
|
||||
|
||||
return camera;
|
||||
}();
|
||||
constexpr glm::vec3 model_color = glm::vec3(1.0f, 1.0f, 1.0f);
|
||||
|
||||
// internal variables
|
||||
constexpr float light_bias = 0.01f;
|
||||
constexpr int32_t tile_size = 32;
|
||||
constexpr int32_t num_tiles_x = width / tile_size;
|
||||
constexpr int32_t num_tiles_y = height / tile_size;
|
||||
|
@ -49,22 +47,8 @@ bool calculate_tile(const int32_t from_x, const int32_t to_width, const int32_t
|
|||
for (int32_t x = from_x; x < (from_x + to_width); x++) {
|
||||
Ray ray_camera = camera.get_ray(x, y, width, height);
|
||||
|
||||
if (auto hit = test_scene(ray_camera, scene)) {
|
||||
const float diffuse = lighting::point_light(hit->position, light_position, hit->normal);
|
||||
|
||||
//shadow calculation
|
||||
float shadow = 0.0f;
|
||||
if(glm::dot(light_position - hit->position, hit->normal) > 0) {
|
||||
const glm::vec3 light_dir = glm::normalize(light_position - hit->position);
|
||||
|
||||
const Ray shadow_ray(hit->position + (hit->normal * light_bias), light_dir);
|
||||
|
||||
if(test_scene(shadow_ray, scene))
|
||||
shadow = 1.0f;
|
||||
}
|
||||
|
||||
const glm::vec3 finalColor = model_color * diffuse * (1.0f - shadow);
|
||||
colors.get(x, y) = glm::vec4(finalColor, 1.0f);
|
||||
if(auto result = cast_scene(ray_camera, scene)) {
|
||||
colors.get(x, y) = glm::vec4(result->color, 1.0f);
|
||||
|
||||
image_dirty = true;
|
||||
}
|
||||
|
@ -182,8 +166,8 @@ void render() {
|
|||
void dump_to_file() {
|
||||
uint8_t pixels[width * height * 3] = {};
|
||||
int i = 0;
|
||||
for (int32_t y = height - 1; y >= 0; y--) {
|
||||
for (int32_t x = 0; x < width; x++) {
|
||||
for(int32_t y = height - 1; y >= 0; y--) {
|
||||
for(int32_t x = 0; x < width; x++) {
|
||||
const glm::ivec4 c = colors.get(x, y);
|
||||
pixels[i++] = c.r;
|
||||
pixels[i++] = c.g;
|
||||
|
@ -239,6 +223,7 @@ int main(int, char*[]) {
|
|||
|
||||
auto& plane = scene.load_from_file("plane.obj");
|
||||
plane.position.y = -1;
|
||||
plane.color = {1, 0, 0};
|
||||
}
|
||||
|
||||
ImGui::EndMenu();
|
||||
|
|
Loading…
Add table
Reference in a new issue