1
Fork 0
sm64/src/audio/heap.c

1739 lines
56 KiB
C

#include <ultra64.h>
#include "heap.h"
#include "data.h"
#include "load.h"
#include "synthesis.h"
#include "seqplayer.h"
#include "effects.h"
#define ALIGN16(val) (((val) + 0xF) & ~0xF)
struct PoolSplit {
u32 wantSeq;
u32 wantBank;
u32 wantUnused;
u32 wantCustom;
}; // size = 0x10
struct PoolSplit2 {
u32 wantPersistent;
u32 wantTemporary;
}; // size = 0x8
#if defined(VERSION_JP) || defined(VERSION_US)
s16 gVolume;
s8 gReverbDownsampleRate;
u8 sReverbDownsampleRateLog; // never read
#endif
struct SoundAllocPool gAudioSessionPool;
struct SoundAllocPool gAudioInitPool;
struct SoundAllocPool gNotesAndBuffersPool;
u8 sAudioHeapPad[0x20]; // probably two unused pools
struct SoundAllocPool gSeqAndBankPool;
struct SoundAllocPool gPersistentCommonPool;
struct SoundAllocPool gTemporaryCommonPool;
struct SoundMultiPool gSeqLoadedPool;
struct SoundMultiPool gBankLoadedPool;
struct SoundMultiPool gUnusedLoadedPool;
#ifdef VERSION_SH
struct Unk1Pool gUnkPool1;
struct UnkPool gUnkPool2;
struct UnkPool gUnkPool3;
#endif
struct PoolSplit sSessionPoolSplit;
struct PoolSplit2 sSeqAndBankPoolSplit;
struct PoolSplit sPersistentCommonPoolSplit;
struct PoolSplit sTemporaryCommonPoolSplit;
#ifdef VERSION_SH
u8 gUnkLoadStatus[0x40];
#endif
u8 gBankLoadStatus[0x40];
u8 gSeqLoadStatus[0x100];
#if defined(VERSION_EU) || defined(VERSION_SH)
volatile u8 gAudioResetStatus;
u8 gAudioResetPresetIdToLoad;
s32 gAudioResetFadeOutFramesLeft;
#endif
u8 gAudioUnusedBuffer[0x1000];
extern s32 gMaxAudioCmds;
#ifdef VERSION_SH
void *get_bank_or_seq_inner(s32 poolIdx, s32 arg1, s32 bankId);
struct UnkEntry *func_sh_802f1ec4(u32 size);
void func_sh_802f2158(struct UnkEntry *entry);
struct UnkEntry *unk_pool2_alloc(u32 size);
void func_sh_802F2320(struct UnkEntry *entry, struct AudioBankSample *sample);
void func_sh_802f23ec(void);
void unk_pools_init(u32 size1, u32 size2);
#endif
#if defined(VERSION_EU)
/**
* Assuming 'k' in [9, 24],
* Computes a newton's method step for f(x) = x^k - d
*/
f64 root_newton_step(f64 x, s32 k, f64 d)
{
f64 deg2 = x * x;
f64 deg4 = deg2 * deg2;
f64 deg8 = deg4 * deg4;
s32 degree = k - 9;
f64 fx;
f64 deriv = deg8;
if (degree & 1) {
deriv *= x;
}
if (degree & 2) {
deriv *= deg2;
}
if (degree & 4) {
deriv *= deg4;
}
if (degree & 8) {
deriv *= deg8;
}
fx = deriv * x - d;
deriv = k * deriv;
return x - fx / deriv;
}
/**
* Assuming 'k' in [9, 24],
* Computes d ^ (1/k)
*
* @return the root, or 1.0 if d is 0
*/
f64 kth_root(f64 d, s32 k) {
f64 root = 1.5;
f64 next;
f64 diff;
s32 i;
if (d == 0.0) {
root = 1.0;
} else {
for (i = 0; i < 64; i++) {
if (1) {
}
next = root_newton_step(root, k, d);
diff = next - root;
if (diff < 0) {
diff = -diff;
}
if (diff < 1e-07) {
root = next;
break;
} else {
root = next;
}
}
}
return root;
}
void build_vol_rampings_table(s32 UNUSED unused, s32 len) {
s32 i;
s32 step;
s32 d;
s32 k = len / 8;
for (step = 0, i = 0; i < 0x400; step += 32, i++) {
d = step;
if (step == 0) {
d = 1;
}
gLeftVolRampings[0][i] = kth_root( d, k - 1);
gRightVolRampings[0][i] = kth_root(1.0 / d, k - 1) * 65536.0;
gLeftVolRampings[1][i] = kth_root( d, k);
gRightVolRampings[1][i] = kth_root(1.0 / d, k) * 65536.0;
gLeftVolRampings[2][i] = kth_root( d, k + 1);
gRightVolRampings[2][i] = kth_root(1.0 / d, k + 1) * 65536.0;
}
}
#endif
void reset_bank_and_seq_load_status(void) {
s32 i;
#ifdef VERSION_SH
for (i = 0; i < 64; i++) {
if (gBankLoadStatus[i] != SOUND_LOAD_STATUS_5) {
gBankLoadStatus[i] = SOUND_LOAD_STATUS_NOT_LOADED;
}
}
for (i = 0; i < 64; i++) {
if (gUnkLoadStatus[i] != SOUND_LOAD_STATUS_5) {
gUnkLoadStatus[i] = SOUND_LOAD_STATUS_NOT_LOADED;
}
}
for (i = 0; i < 256; i++) {
if (gSeqLoadStatus[i] != SOUND_LOAD_STATUS_5) {
gSeqLoadStatus[i] = SOUND_LOAD_STATUS_NOT_LOADED;
}
}
#else
for (i = 0; i < 64; i++) {
gBankLoadStatus[i] = SOUND_LOAD_STATUS_NOT_LOADED;
}
for (i = 0; i < 256; i++) {
gSeqLoadStatus[i] = SOUND_LOAD_STATUS_NOT_LOADED;
}
#endif
}
void discard_bank(s32 bankId) {
s32 i;
for (i = 0; i < gMaxSimultaneousNotes; i++) {
struct Note *note = &gNotes[i];
#if defined(VERSION_EU)
if (note->noteSubEu.bankId == bankId) {
#else
if (note->bankId == bankId) {
#endif
// (These prints are unclear. Arguments are picked semi-randomly.)
eu_stubbed_printf_1("Warning:Kill Note %x \n", i);
#ifdef VERSION_SH
if (note->unkSH34 == NOTE_PRIORITY_DISABLED && note->priority) {
#else
if (note->priority >= NOTE_PRIORITY_MIN) {
#endif
eu_stubbed_printf_3("Kill Voice %d (ID %d) %d\n", note->waveId,
bankId, note->priority);
eu_stubbed_printf_0("Warning: Running Sequence's data disappear!\n");
note->parentLayer->enabled = FALSE; // is 0x48, should be 0x44
note->parentLayer->finished = TRUE;
}
note_disable(note);
audio_list_remove(&note->listItem);
audio_list_push_back(&gNoteFreeLists.disabled, &note->listItem);
}
}
}
void discard_sequence(s32 seqId) {
s32 i;
for (i = 0; i < SEQUENCE_PLAYERS; i++) {
if (gSequencePlayers[i].enabled && gSequencePlayers[i].seqId == seqId) {
#if defined(VERSION_EU) || defined(VERSION_SH)
sequence_player_disable(&gSequencePlayers[i]);
#else
sequence_player_disable(gSequencePlayers + i);
#endif
}
}
}
void *soundAlloc(struct SoundAllocPool *pool, u32 size) {
#if defined(VERSION_EU) || defined(VERSION_SH)
u8 *start;
u8 *pos;
u32 alignedSize = ALIGN16(size);
start = pool->cur;
if (start + alignedSize <= pool->start + pool->size) {
pool->cur += alignedSize;
for (pos = start; pos < pool->cur; pos++) {
*pos = 0;
}
} else {
eu_stubbed_printf_1("Heap OverFlow : Not Allocate %d!\n", size);
return NULL;
}
#ifdef VERSION_SH
pool->numAllocatedEntries++;
#endif
return start;
#else
u8 *start;
s32 last;
s32 i;
if ((pool->cur + ALIGN16(size) <= pool->size + pool->start)) {
start = pool->cur;
pool->cur += ALIGN16(size);
last = pool->cur - start - 1;
for (i = 0; i <= last; i++) {
start[i] = 0;
}
} else {
return NULL;
}
return start;
#endif
}
#ifdef VERSION_SH
void *sound_alloc_uninitialized(struct SoundAllocPool *pool, u32 size) {
u8 *start;
u32 alignedSize = ALIGN16(size);
start = pool->cur;
if (start + alignedSize <= pool->start + pool->size) {
pool->cur += alignedSize;
} else {
return NULL;
}
pool->numAllocatedEntries++;
return start;
}
#endif
void sound_alloc_pool_init(struct SoundAllocPool *pool, void *memAddr, u32 size) {
pool->cur = pool->start = (u8 *) ALIGN16((uintptr_t) memAddr);
#ifdef VERSION_SH
pool->size = size - ((uintptr_t) memAddr & 0xf);
#else
pool->size = size;
#endif
pool->numAllocatedEntries = 0;
}
void persistent_pool_clear(struct PersistentPool *persistent) {
persistent->pool.numAllocatedEntries = 0;
persistent->pool.cur = persistent->pool.start;
persistent->numEntries = 0;
}
void temporary_pool_clear(struct TemporaryPool *temporary) {
temporary->pool.numAllocatedEntries = 0;
temporary->pool.cur = temporary->pool.start;
temporary->nextSide = 0;
temporary->entries[0].ptr = temporary->pool.start;
#if defined(VERSION_EU) || defined(VERSION_SH)
temporary->entries[1].ptr = temporary->pool.start + temporary->pool.size;
#else
temporary->entries[1].ptr = temporary->pool.size + temporary->pool.start;
#endif
temporary->entries[0].id = -1; // should be at 1e not 1c
temporary->entries[1].id = -1;
}
void unused_803160F8(struct SoundAllocPool *pool) {
pool->numAllocatedEntries = 0;
pool->cur = pool->start;
}
extern s32 D_SH_80315EE8;
void sound_init_main_pools(s32 sizeForAudioInitPool) {
sound_alloc_pool_init(&gAudioInitPool, gAudioHeap, sizeForAudioInitPool);
sound_alloc_pool_init(&gAudioSessionPool, gAudioHeap + sizeForAudioInitPool, gAudioHeapSize - sizeForAudioInitPool);
}
#ifdef VERSION_SH
#define SOUND_ALLOC_FUNC sound_alloc_uninitialized
#else
#define SOUND_ALLOC_FUNC soundAlloc
#endif
void session_pools_init(struct PoolSplit *a) {
gAudioSessionPool.cur = gAudioSessionPool.start;
sound_alloc_pool_init(&gNotesAndBuffersPool, SOUND_ALLOC_FUNC(&gAudioSessionPool, a->wantSeq), a->wantSeq);
sound_alloc_pool_init(&gSeqAndBankPool, SOUND_ALLOC_FUNC(&gAudioSessionPool, a->wantCustom), a->wantCustom);
}
void seq_and_bank_pool_init(struct PoolSplit2 *a) {
gSeqAndBankPool.cur = gSeqAndBankPool.start;
sound_alloc_pool_init(&gPersistentCommonPool, SOUND_ALLOC_FUNC(&gSeqAndBankPool, a->wantPersistent), a->wantPersistent);
sound_alloc_pool_init(&gTemporaryCommonPool, SOUND_ALLOC_FUNC(&gSeqAndBankPool, a->wantTemporary), a->wantTemporary);
}
void persistent_pools_init(struct PoolSplit *a) {
gPersistentCommonPool.cur = gPersistentCommonPool.start;
sound_alloc_pool_init(&gSeqLoadedPool.persistent.pool, SOUND_ALLOC_FUNC(&gPersistentCommonPool, a->wantSeq), a->wantSeq);
sound_alloc_pool_init(&gBankLoadedPool.persistent.pool, SOUND_ALLOC_FUNC(&gPersistentCommonPool, a->wantBank), a->wantBank);
sound_alloc_pool_init(&gUnusedLoadedPool.persistent.pool, SOUND_ALLOC_FUNC(&gPersistentCommonPool, a->wantUnused),
a->wantUnused);
persistent_pool_clear(&gSeqLoadedPool.persistent);
persistent_pool_clear(&gBankLoadedPool.persistent);
persistent_pool_clear(&gUnusedLoadedPool.persistent);
}
void temporary_pools_init(struct PoolSplit *a) {
gTemporaryCommonPool.cur = gTemporaryCommonPool.start;
sound_alloc_pool_init(&gSeqLoadedPool.temporary.pool, SOUND_ALLOC_FUNC(&gTemporaryCommonPool, a->wantSeq), a->wantSeq);
sound_alloc_pool_init(&gBankLoadedPool.temporary.pool, SOUND_ALLOC_FUNC(&gTemporaryCommonPool, a->wantBank), a->wantBank);
sound_alloc_pool_init(&gUnusedLoadedPool.temporary.pool, SOUND_ALLOC_FUNC(&gTemporaryCommonPool, a->wantUnused),
a->wantUnused);
temporary_pool_clear(&gSeqLoadedPool.temporary);
temporary_pool_clear(&gBankLoadedPool.temporary);
temporary_pool_clear(&gUnusedLoadedPool.temporary);
}
#undef SOUND_ALLOC_FUNC
#if defined(VERSION_JP) || defined(VERSION_US)
UNUSED static void unused_803163D4(void) {
}
#endif
#ifdef VERSION_SH
void *alloc_bank_or_seq(s32 poolIdx, s32 size, s32 arg3, s32 id) {
#else
void *alloc_bank_or_seq(struct SoundMultiPool *arg0, s32 arg1, s32 size, s32 arg3, s32 id) {
#endif
// arg3 = 0, 1 or 2?
#ifdef VERSION_SH
struct SoundMultiPool *arg0;
#define isSound poolIdx
#endif
struct TemporaryPool *tp;
struct SoundAllocPool *pool;
void *ret;
#if defined(VERSION_JP) || defined(VERSION_US)
u16 UNUSED _firstVal;
u16 UNUSED _secondVal;
#else
u16 firstVal;
u16 secondVal;
#endif
u32 nullID = -1;
UNUSED s32 i;
u8 *table;
#ifndef VERSION_SH
u8 isSound;
#endif
#if defined(VERSION_JP) || defined(VERSION_US)
u16 firstVal;
u16 secondVal;
u32 bothDiscardable;
u32 leftDiscardable, rightDiscardable;
u32 leftNotLoaded, rightNotLoaded;
u32 leftAvail, rightAvail;
#endif
#ifdef VERSION_SH
switch (poolIdx) {
case 0:
arg0 = &gSeqLoadedPool;
table = gSeqLoadStatus;
break;
case 1:
arg0 = &gBankLoadedPool;
table = gBankLoadStatus;
break;
case 2:
arg0 = &gUnusedLoadedPool;
table = gUnkLoadStatus;
break;
}
#endif
if (arg3 == 0) {
tp = &arg0->temporary;
#ifndef VERSION_SH
if (arg0 == &gSeqLoadedPool) {
table = gSeqLoadStatus;
isSound = FALSE;
} else if (arg0 == &gBankLoadedPool) {
table = gBankLoadStatus;
isSound = TRUE;
}
#endif
#ifdef VERSION_SH
if (tp->entries[0].id == (s8)nullID) {
firstVal = SOUND_LOAD_STATUS_NOT_LOADED;
} else {
firstVal = table[tp->entries[0].id];
}
if (tp->entries[1].id == (s8)nullID) {
secondVal = SOUND_LOAD_STATUS_NOT_LOADED;
} else {
secondVal = table[tp->entries[1].id];
}
#else
firstVal = (tp->entries[0].id == (s8)nullID ? SOUND_LOAD_STATUS_NOT_LOADED : table[tp->entries[0].id]);
secondVal = (tp->entries[1].id == (s8)nullID ? SOUND_LOAD_STATUS_NOT_LOADED : table[tp->entries[1].id]);
#endif
#if defined(VERSION_JP) || defined(VERSION_US)
leftNotLoaded = (firstVal == SOUND_LOAD_STATUS_NOT_LOADED);
leftDiscardable = (firstVal == SOUND_LOAD_STATUS_DISCARDABLE);
leftAvail = (firstVal != SOUND_LOAD_STATUS_IN_PROGRESS);
rightNotLoaded = (secondVal == SOUND_LOAD_STATUS_NOT_LOADED);
rightDiscardable = (secondVal == SOUND_LOAD_STATUS_DISCARDABLE);
rightAvail = (secondVal != SOUND_LOAD_STATUS_IN_PROGRESS);
bothDiscardable = (leftDiscardable && rightDiscardable);
if (leftNotLoaded) {
tp->nextSide = 0;
} else if (rightNotLoaded) {
tp->nextSide = 1;
} else if (bothDiscardable) {
// Use the opposite side from last time.
} else if (firstVal == SOUND_LOAD_STATUS_DISCARDABLE) { // ??! (I blame copt)
tp->nextSide = 0;
} else if (rightDiscardable) {
tp->nextSide = 1;
} else if (leftAvail) {
tp->nextSide = 0;
} else if (rightAvail) {
tp->nextSide = 1;
} else {
// Both left and right sides are being loaded into.
return NULL;
}
#else
#ifdef VERSION_EU
if (0) {
// It's unclear where these string literals go.
eu_stubbed_printf_0("DataHeap Not Allocate \n");
eu_stubbed_printf_1("StayHeap Not Allocate %d\n", 0);
eu_stubbed_printf_1("AutoHeap Not Allocate %d\n", 0);
}
#endif
#ifdef VERSION_SH
if (poolIdx == 1) {
if (firstVal == SOUND_LOAD_STATUS_4) {
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].bankId == tp->entries[0].id && gNotes[i].noteSubEu.enabled) {
break;
}
}
if (i == gMaxSimultaneousNotes) {
if (gBankLoadStatus[tp->entries[0].id] != SOUND_LOAD_STATUS_5) {
gBankLoadStatus[tp->entries[0].id] = SOUND_LOAD_STATUS_DISCARDABLE;
}
firstVal = SOUND_LOAD_STATUS_DISCARDABLE;
}
}
if (secondVal == SOUND_LOAD_STATUS_4) {
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].bankId == tp->entries[1].id && gNotes[i].noteSubEu.enabled) {
break;
}
}
if (i == gMaxSimultaneousNotes) {
if (gBankLoadStatus[tp->entries[1].id] != SOUND_LOAD_STATUS_5) {
gBankLoadStatus[tp->entries[1].id] = SOUND_LOAD_STATUS_DISCARDABLE;
}
secondVal = SOUND_LOAD_STATUS_DISCARDABLE;
}
}
}
#endif
if (firstVal == SOUND_LOAD_STATUS_NOT_LOADED) {
tp->nextSide = 0;
} else if (secondVal == SOUND_LOAD_STATUS_NOT_LOADED) {
tp->nextSide = 1;
} else {
eu_stubbed_printf_0("WARNING: NO FREE AUTOSEQ AREA.\n");
if ((firstVal == SOUND_LOAD_STATUS_DISCARDABLE) && (secondVal == SOUND_LOAD_STATUS_DISCARDABLE)) {
// Use the opposite side from last time.
} else if (firstVal == SOUND_LOAD_STATUS_DISCARDABLE) {
tp->nextSide = 0;
} else if (secondVal == SOUND_LOAD_STATUS_DISCARDABLE) {
tp->nextSide = 1;
} else {
#ifdef VERSION_EU
eu_stubbed_printf_0("WARNING: NO STOP AUTO AREA.\n");
eu_stubbed_printf_0(" AND TRY FORCE TO STOP SIDE \n");
if (firstVal != SOUND_LOAD_STATUS_IN_PROGRESS) {
tp->nextSide = 0;
} else if (secondVal != SOUND_LOAD_STATUS_IN_PROGRESS) {
tp->nextSide = 1;
} else {
// Both left and right sides are being loaded into.
eu_stubbed_printf_0("TWO SIDES ARE LOADING... ALLOC CANCELED.\n");
return NULL;
}
#else
if (poolIdx == 0) {
if (firstVal == SOUND_LOAD_STATUS_COMPLETE) {
for (i = 0; i < SEQUENCE_PLAYERS; i++) {
if (gSequencePlayers[i].enabled && gSequencePlayers[i].seqId == tp->entries[0].id) {
break;
}
}
if (i == SEQUENCE_PLAYERS) {
tp->nextSide = 0;
goto out;
}
}
if (secondVal == SOUND_LOAD_STATUS_COMPLETE) {
for (i = 0; i < SEQUENCE_PLAYERS; i++) {
if (gSequencePlayers[i].enabled && gSequencePlayers[i].seqId == tp->entries[1].id) {
break;
}
}
if (i == SEQUENCE_PLAYERS) {
tp->nextSide = 1;
goto out;
}
}
} else if (poolIdx == 1) {
if (firstVal == SOUND_LOAD_STATUS_COMPLETE) {
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].bankId == tp->entries[0].id && gNotes[i].noteSubEu.enabled) {
break;
}
}
if (i == gMaxSimultaneousNotes) {
tp->nextSide = 0;
goto out;
}
}
if (secondVal == SOUND_LOAD_STATUS_COMPLETE) {
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].bankId == tp->entries[1].id && gNotes[i].noteSubEu.enabled) {
break;
}
}
if (i == gMaxSimultaneousNotes) {
tp->nextSide = 1;
goto out;
}
}
}
if (tp->nextSide == 0) {
if (firstVal == SOUND_LOAD_STATUS_IN_PROGRESS) {
if (secondVal != SOUND_LOAD_STATUS_IN_PROGRESS) {
tp->nextSide = 1;
goto out;
}
} else {
goto out;
}
} else {
if (secondVal == SOUND_LOAD_STATUS_IN_PROGRESS) {
if (firstVal != SOUND_LOAD_STATUS_IN_PROGRESS) {
tp->nextSide = 0;
goto out;
}
} else {
goto out;
}
}
return NULL;
out:;
#endif
}
}
#endif
pool = &arg0->temporary.pool;
if (tp->entries[tp->nextSide].id != (s8)nullID) {
table[tp->entries[tp->nextSide].id] = SOUND_LOAD_STATUS_NOT_LOADED;
if (isSound == TRUE) {
discard_bank(tp->entries[tp->nextSide].id);
}
}
switch (tp->nextSide) {
case 0:
tp->entries[0].ptr = pool->start;
tp->entries[0].id = id;
tp->entries[0].size = size;
pool->cur = pool->start + size;
#ifdef VERSION_SH
if (tp->entries[1].id != (s32)nullID)
#endif
if (tp->entries[1].ptr < pool->cur) {
eu_stubbed_printf_0("WARNING: Before Area Overlaid After.");
// Throw out the entry on the other side if it doesn't fit.
// (possible @bug: what if it's currently being loaded?)
table[tp->entries[1].id] = SOUND_LOAD_STATUS_NOT_LOADED;
switch (isSound) {
case FALSE:
discard_sequence(tp->entries[1].id);
break;
case TRUE:
discard_bank(tp->entries[1].id);
break;
}
tp->entries[1].id = (s32)nullID;
#if defined(VERSION_EU) || defined(VERSION_SH)
tp->entries[1].ptr = pool->start + pool->size;
#else
tp->entries[1].ptr = pool->size + pool->start;
#endif
}
ret = tp->entries[0].ptr;
break;
case 1:
#if defined(VERSION_SH)
tp->entries[1].ptr = (u8 *) ((uintptr_t) (pool->start + pool->size - size) & ~0x0f);
#elif defined(VERSION_EU)
tp->entries[1].ptr = pool->start + pool->size - size - 0x10;
#else
tp->entries[1].ptr = pool->size + pool->start - size - 0x10;
#endif
tp->entries[1].id = id;
tp->entries[1].size = size;
#ifdef VERSION_SH
if (tp->entries[0].id != (s32)nullID)
#endif
if (tp->entries[1].ptr < pool->cur) {
eu_stubbed_printf_0("WARNING: After Area Overlaid Before.");
table[tp->entries[0].id] = SOUND_LOAD_STATUS_NOT_LOADED;
switch (isSound) {
case FALSE:
discard_sequence(tp->entries[0].id);
break;
case TRUE:
discard_bank(tp->entries[0].id);
break;
}
tp->entries[0].id = (s32)nullID;
pool->cur = pool->start;
}
ret = tp->entries[1].ptr;
break;
default:
eu_stubbed_printf_1("MEMORY:SzHeapAlloc ERROR: sza->side %d\n", tp->nextSide);
return NULL;
}
// Switch sides for next time in case both entries are
// SOUND_LOAD_STATUS_DISCARDABLE.
tp->nextSide ^= 1;
return ret;
}
#if defined(VERSION_EU) || defined(VERSION_SH)
#ifdef VERSION_SH
ret = sound_alloc_uninitialized(&arg0->persistent.pool, size);
#else
ret = soundAlloc(&arg0->persistent.pool, arg1 * size);
#endif
arg0->persistent.entries[arg0->persistent.numEntries].ptr = ret;
if (ret == NULL)
#else
arg0->persistent.entries[arg0->persistent.numEntries].ptr = soundAlloc(&arg0->persistent.pool, arg1 * size);
if (arg0->persistent.entries[arg0->persistent.numEntries].ptr == NULL)
#endif
{
switch (arg3) {
case 2:
#if defined(VERSION_EU)
eu_stubbed_printf_0("MEMORY:StayHeap OVERFLOW.");
return alloc_bank_or_seq(arg0, arg1, size, 0, id);
#elif defined(VERSION_SH)
return alloc_bank_or_seq(poolIdx, size, 0, id);
#else
// Prevent tail call optimization.
ret = alloc_bank_or_seq(arg0, arg1, size, 0, id);
return ret;
#endif
case 1:
#ifdef VERSION_SH
case 0:
#endif
eu_stubbed_printf_1("MEMORY:StayHeap OVERFLOW (REQ:%d)", arg1 * size);
return NULL;
}
}
// TODO: why is this guaranteed to write <= 32 entries...?
// Because the buffer is small enough that more don't fit?
arg0->persistent.entries[arg0->persistent.numEntries].id = id;
arg0->persistent.entries[arg0->persistent.numEntries].size = size;
#if defined(VERSION_EU) || defined(VERSION_SH)
return arg0->persistent.entries[arg0->persistent.numEntries++].ptr;
#else
arg0->persistent.numEntries++; return arg0->persistent.entries[arg0->persistent.numEntries - 1].ptr;
#endif
#ifdef VERSION_SH
#undef isSound
#endif
}
#ifdef VERSION_SH
void *get_bank_or_seq(s32 poolIdx, s32 arg1, s32 id) {
void *ret;
ret = unk_pool1_lookup(poolIdx, id);
if (ret != NULL) {
return ret;
}
if (arg1 == 3) {
return NULL;
}
return get_bank_or_seq_inner(poolIdx, arg1, id);
}
void *get_bank_or_seq_inner(s32 poolIdx, s32 arg1, s32 bankId) {
u32 i;
struct SoundMultiPool* loadedPool;
struct TemporaryPool* temporary;
struct PersistentPool* persistent;
switch (poolIdx) {
case 0:
loadedPool = &gSeqLoadedPool;
break;
case 1:
loadedPool = &gBankLoadedPool;
break;
case 2:
loadedPool = &gUnusedLoadedPool;
break;
}
temporary = &loadedPool->temporary;
if (arg1 == 0) {
if (temporary->entries[0].id == bankId) {
temporary->nextSide = 1;
return temporary->entries[0].ptr;
} else if (temporary->entries[1].id == bankId) {
temporary->nextSide = 0;
return temporary->entries[1].ptr;
} else {
return NULL;
}
}
persistent = &loadedPool->persistent;
for (i = 0; i < persistent->numEntries; i++) {
if (persistent->entries[i].id == bankId) {
return persistent->entries[i].ptr;
}
}
if (arg1 == 2) {
return get_bank_or_seq(poolIdx, 0, bankId);
}
return NULL;
}
#endif
#ifndef VERSION_SH
void *get_bank_or_seq(struct SoundMultiPool *arg0, s32 arg1, s32 id) {
u32 i;
UNUSED void *ret;
struct TemporaryPool *temporary = &arg0->temporary;
if (arg1 == 0) {
// Try not to overwrite sound that we have just accessed, by setting nextSide appropriately.
if (temporary->entries[0].id == id) {
temporary->nextSide = 1;
return temporary->entries[0].ptr;
} else if (temporary->entries[1].id == id) {
temporary->nextSide = 0;
return temporary->entries[1].ptr;
}
eu_stubbed_printf_1("Auto Heap Unhit for ID %d\n", id);
return NULL;
} else {
struct PersistentPool *persistent = &arg0->persistent;
for (i = 0; i < persistent->numEntries; i++) {
if (id == persistent->entries[i].id) {
eu_stubbed_printf_2("Cache hit %d at stay %d\n", id, i);
return persistent->entries[i].ptr;
}
}
if (arg1 == 2) {
#if defined(VERSION_EU) || defined(VERSION_SH)
return get_bank_or_seq(arg0, 0, id);
#else
// Prevent tail call optimization by using a temporary.
// Either copt or -Wo,-notail.
ret = get_bank_or_seq(arg0, 0, id);
return ret;
#endif
}
return NULL;
}
}
#endif
#if defined(VERSION_EU) || defined(VERSION_SH)
void func_eu_802e27e4_unused(f32 arg0, f32 arg1, u16 *arg2) {
s32 i;
f32 tmp[16];
tmp[0] = (f32) (arg1 * 262159.0f);
tmp[8] = (f32) (arg0 * 262159.0f);
tmp[1] = (f32) ((arg1 * arg0) * 262159.0f);
tmp[9] = (f32) (((arg0 * arg0) + arg1) * 262159.0f);
for (i = 2; i < 8; i++) {
//! @bug they probably meant to store the value to tmp[i] and tmp[8 + i]
arg2[i] = arg1 * tmp[i - 2] + arg0 * tmp[i - 1];
arg2[8 + i] = arg1 * tmp[6 + i] + arg0 * tmp[7 + i];
}
for (i = 0; i < 16; i++) {
arg2[i] = tmp[i];
}
#ifdef VERSION_EU
for (i = 0; i < 8; i++) {
eu_stubbed_printf_1("%d ", arg2[i]);
}
eu_stubbed_printf_0("\n");
for (i = 8; i < 16; i++) {
eu_stubbed_printf_1("%d ", arg2[i]);
}
eu_stubbed_printf_0("\n");
#endif
}
#endif
#ifdef VERSION_SH
void fill_zero_filter(s16 filter[]) {
s32 i;
for (i = 0; i < 8; i++) {
filter[i] = 0;
}
}
extern s16 unk_sh_data_3[15 * 8];
extern s16 unk_sh_data_4[15 * 8];
void func_sh_802F0DE8(s16 filter[8], s32 arg1) {
s32 i;
s16 *ptr = &unk_sh_data_3[8 * (arg1 - 1)];
for (i = 0; i < 8; i++) {
filter[i] = ptr[i];
}
}
void func_sh_802F0E40(s16 filter[8], s32 arg1) { // Unused
s32 i;
s16 *ptr = &unk_sh_data_4[8 * (arg1 - 1)];
for (i = 0; i < 8; i++) {
filter[i] = ptr[i];
}
}
void fill_filter(s16 filter[8], s32 arg1, s32 arg2) {
s32 i;
s16 *ptr;
if (arg1 != 0) {
func_sh_802F0DE8(filter, arg1);
} else {
fill_zero_filter(filter);
}
if (arg2 != 0) {
ptr = &unk_sh_data_4[8 * (arg2 - 1)];
for (i = 0; i < 8; i++) {
filter[i] += ptr[i];
}
}
}
#endif
void decrease_reverb_gain(void) {
#if defined(VERSION_EU)
s32 i;
for (i = 0; i < gNumSynthesisReverbs; i++) {
gSynthesisReverbs[i].reverbGain -= gSynthesisReverbs[i].reverbGain / 8;
}
#elif defined(VERSION_JP) || defined(VERSION_US)
gSynthesisReverb.reverbGain -= gSynthesisReverb.reverbGain / 4;
#else
s32 i, j;
s32 v0 = gAudioBufferParameters.presetUnk4 == 2 ? 2 : 1;
for (i = 0; i < gNumSynthesisReverbs; i++) {
for (j = 0; j < v0; j++) {
gSynthesisReverbs[i].reverbGain -= gSynthesisReverbs[i].reverbGain / 3;
}
}
#endif
}
#if defined(VERSION_SH)
void clear_curr_ai_buffer(void) {
s32 currIndex = gCurrAiBufferIndex;
s32 i;
gAiBufferLengths[currIndex] = gAudioBufferParameters.minAiBufferLength;
for (i = 0; i < (s32) (AIBUFFER_LEN / sizeof(s16)); i++) {
gAiBuffers[currIndex][i] = 0;
}
}
#endif
#if defined(VERSION_EU) || defined(VERSION_SH)
s32 audio_shut_down_and_reset_step(void) {
s32 i;
s32 j;
#ifdef VERSION_SH
s32 num = gAudioBufferParameters.presetUnk4 == 2 ? 2 : 1;
#endif
switch (gAudioResetStatus) {
case 5:
for (i = 0; i < SEQUENCE_PLAYERS; i++) {
sequence_player_disable(&gSequencePlayers[i]);
}
#ifdef VERSION_SH
gAudioResetFadeOutFramesLeft = 4 / num;
#else
gAudioResetFadeOutFramesLeft = 4;
#endif
gAudioResetStatus--;
break;
case 4:
if (gAudioResetFadeOutFramesLeft != 0) {
gAudioResetFadeOutFramesLeft--;
decrease_reverb_gain();
} else {
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].noteSubEu.enabled && gNotes[i].adsr.state != ADSR_STATE_DISABLED) {
gNotes[i].adsr.fadeOutVel = gAudioBufferParameters.updatesPerFrameInv;
gNotes[i].adsr.action |= ADSR_ACTION_RELEASE;
}
}
#ifdef VERSION_SH
gAudioResetFadeOutFramesLeft = 16 / num;
#else
gAudioResetFadeOutFramesLeft = 16;
#endif
gAudioResetStatus--;
}
break;
case 3:
if (gAudioResetFadeOutFramesLeft != 0) {
gAudioResetFadeOutFramesLeft--;
#ifdef VERSION_SH
if (1) {
}
#endif
decrease_reverb_gain();
} else {
for (i = 0; i < NUMAIBUFFERS; i++) {
for (j = 0; j < (s32) (AIBUFFER_LEN / sizeof(s16)); j++) {
gAiBuffers[i][j] = 0;
}
}
#ifdef VERSION_SH
gAudioResetFadeOutFramesLeft = 4 / num;
#else
gAudioResetFadeOutFramesLeft = 4;
#endif
gAudioResetStatus--;
}
break;
case 2:
#ifdef VERSION_SH
clear_curr_ai_buffer();
#endif
if (gAudioResetFadeOutFramesLeft != 0) {
gAudioResetFadeOutFramesLeft--;
} else {
gAudioResetStatus--;
#ifdef VERSION_SH
func_sh_802f23ec();
#endif
}
break;
case 1:
audio_reset_session();
gAudioResetStatus = 0;
#ifdef VERSION_SH
for (i = 0; i < NUMAIBUFFERS; i++) {
gAiBufferLengths[i] = gAudioBufferParameters.maxAiBufferLength;
for (j = 0; j < (s32) (AIBUFFER_LEN / sizeof(s16)); j++) {
gAiBuffers[i][j] = 0;
}
}
#endif
}
#ifdef VERSION_SH
if (gAudioResetFadeOutFramesLeft) {
}
#endif
if (gAudioResetStatus < 3) {
return 0;
}
return 1;
}
#else
/**
* Waits until a specified number of audio frames have been created
*/
void wait_for_audio_frames(UNUSED s32 frames) {
gAudioFrameCount = 0;
#ifdef TARGET_N64
// Sound thread will update gAudioFrameCount
while (gAudioFrameCount < frames) {
// spin
}
#endif
}
#endif
#if defined(VERSION_JP) || defined(VERSION_US)
void audio_reset_session(struct AudioSessionSettings *preset) {
#else
void audio_reset_session(void) {
struct AudioSessionSettingsEU *preset = &gAudioSessionPresets[gAudioResetPresetIdToLoad];
struct ReverbSettingsEU *reverbSettings;
#endif
s16 *mem;
#if defined(VERSION_JP) || defined(VERSION_US)
s8 updatesPerFrame;
s32 reverbWindowSize;
s32 k;
#endif
s32 i;
s32 j;
s32 persistentMem;
s32 temporaryMem;
s32 totalMem;
s32 wantMisc;
#if defined(VERSION_JP) || defined(VERSION_US)
s32 frames;
s32 remainingDmas;
#else
struct SynthesisReverb *reverb;
#endif
eu_stubbed_printf_1("Heap Reconstruct Start %x\n", gAudioResetPresetIdToLoad);
#if defined(VERSION_JP) || defined(VERSION_US)
if (gAudioLoadLock != AUDIO_LOCK_UNINITIALIZED) {
decrease_reverb_gain();
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].enabled && gNotes[i].adsr.state != ADSR_STATE_DISABLED) {
gNotes[i].adsr.fadeOutVel = 0x8000 / gAudioUpdatesPerFrame;
gNotes[i].adsr.action |= ADSR_ACTION_RELEASE;
}
}
// Wait for all notes to stop playing
frames = 0;
for (;;) {
wait_for_audio_frames(1);
frames++;
if (frames > 4 * 60) {
// Break after 4 seconds
break;
}
for (i = 0; i < gMaxSimultaneousNotes; i++) {
if (gNotes[i].enabled)
break;
}
if (i == gMaxSimultaneousNotes) {
// All zero, break early
break;
}
}
// Wait for the reverb to finish as well
decrease_reverb_gain();
wait_for_audio_frames(3);
// The audio interface is double buffered; thus, we have to take the
// load lock for 2 frames for the buffers to free up before we can
// repurpose memory. Make that 3 frames, just in case.
gAudioLoadLock = AUDIO_LOCK_LOADING;
wait_for_audio_frames(3);
remainingDmas = gCurrAudioFrameDmaCount;
while (remainingDmas > 0) {
for (i = 0; i < gCurrAudioFrameDmaCount; i++) {
if (osRecvMesg(&gCurrAudioFrameDmaQueue, NULL, OS_MESG_NOBLOCK) == 0)
remainingDmas--;
}
}
gCurrAudioFrameDmaCount = 0;
for (j = 0; j < NUMAIBUFFERS; j++) {
for (k = 0; k < (s32) (AIBUFFER_LEN / sizeof(s16)); k++) {
gAiBuffers[j][k] = 0;
}
}
}
#endif
gSampleDmaNumListItems = 0;
#if defined(VERSION_EU) || defined(VERSION_SH)
gAudioBufferParameters.frequency = preset->frequency;
gAudioBufferParameters.aiFrequency = osAiSetFrequency(gAudioBufferParameters.frequency);
gAudioBufferParameters.samplesPerFrameTarget = ALIGN16(gAudioBufferParameters.frequency / gRefreshRate);
gAudioBufferParameters.minAiBufferLength = gAudioBufferParameters.samplesPerFrameTarget - 0x10;
gAudioBufferParameters.maxAiBufferLength = gAudioBufferParameters.samplesPerFrameTarget + 0x10;
#ifdef VERSION_SH
gAudioBufferParameters.updatesPerFrame = (gAudioBufferParameters.samplesPerFrameTarget + 0x10) / 192 + 1;
gAudioBufferParameters.samplesPerUpdate = (gAudioBufferParameters.samplesPerFrameTarget / gAudioBufferParameters.updatesPerFrame) & -8;
#else
gAudioBufferParameters.updatesPerFrame = (gAudioBufferParameters.samplesPerFrameTarget + 0x10) / 160 + 1;
gAudioBufferParameters.samplesPerUpdate = (gAudioBufferParameters.samplesPerFrameTarget / gAudioBufferParameters.updatesPerFrame) & 0xfff8;
#endif
gAudioBufferParameters.samplesPerUpdateMax = gAudioBufferParameters.samplesPerUpdate + 8;
gAudioBufferParameters.samplesPerUpdateMin = gAudioBufferParameters.samplesPerUpdate - 8;
gAudioBufferParameters.resampleRate = 32000.0f / FLOAT_CAST(gAudioBufferParameters.frequency);
#ifdef VERSION_SH
gAudioBufferParameters.unkUpdatesPerFrameScaled = (1.0f / 256.0f) / gAudioBufferParameters.updatesPerFrame;
#else
gAudioBufferParameters.unkUpdatesPerFrameScaled = (3.0f / 1280.0f) / gAudioBufferParameters.updatesPerFrame;
#endif
gAudioBufferParameters.updatesPerFrameInv = 1.0f / gAudioBufferParameters.updatesPerFrame;
gMaxSimultaneousNotes = preset->maxSimultaneousNotes;
gVolume = preset->volume;
gTempoInternalToExternal = (u32) (gAudioBufferParameters.updatesPerFrame * 2880000.0f / gTatumsPerBeat / D_EU_802298D0);
gAudioBufferParameters.presetUnk4 = preset->unk1;
gAudioBufferParameters.samplesPerFrameTarget *= gAudioBufferParameters.presetUnk4;
gAudioBufferParameters.maxAiBufferLength *= gAudioBufferParameters.presetUnk4;
gAudioBufferParameters.minAiBufferLength *= gAudioBufferParameters.presetUnk4;
gAudioBufferParameters.updatesPerFrame *= gAudioBufferParameters.presetUnk4;
#ifdef VERSION_SH
if (gAudioBufferParameters.presetUnk4 >= 2) {
gAudioBufferParameters.maxAiBufferLength -= 0x10;
}
gMaxAudioCmds = gMaxSimultaneousNotes * 0x14 * gAudioBufferParameters.updatesPerFrame + preset->numReverbs * 0x20 + 0x1E0;
#else
gMaxAudioCmds = gMaxSimultaneousNotes * 0x10 * gAudioBufferParameters.updatesPerFrame + preset->numReverbs * 0x20 + 0x300;
#endif
#else
reverbWindowSize = preset->reverbWindowSize;
gAiFrequency = osAiSetFrequency(preset->frequency);
gMaxSimultaneousNotes = preset->maxSimultaneousNotes;
gSamplesPerFrameTarget = ALIGN16(gAiFrequency / 60);
gReverbDownsampleRate = preset->reverbDownsampleRate;
switch (gReverbDownsampleRate) {
case 1:
sReverbDownsampleRateLog = 0;
break;
case 2:
sReverbDownsampleRateLog = 1;
break;
case 4:
sReverbDownsampleRateLog = 2;
break;
case 8:
sReverbDownsampleRateLog = 3;
break;
case 16:
sReverbDownsampleRateLog = 4;
break;
default:
sReverbDownsampleRateLog = 0;
}
gReverbDownsampleRate = preset->reverbDownsampleRate;
gVolume = preset->volume;
gMinAiBufferLength = gSamplesPerFrameTarget - 0x10;
updatesPerFrame = gSamplesPerFrameTarget / 160 + 1;
gAudioUpdatesPerFrame = gSamplesPerFrameTarget / 160 + 1;
// Compute conversion ratio from the internal unit tatums/tick to the
// external beats/minute (JP) or tatums/minute (US). In practice this is
// 300 on JP and 14360 on US.
#ifdef VERSION_JP
gTempoInternalToExternal = updatesPerFrame * 3600 / gTatumsPerBeat;
#else
gTempoInternalToExternal = (u32)(updatesPerFrame * 2880000.0f / gTatumsPerBeat / 16.713f);
#endif
gMaxAudioCmds = gMaxSimultaneousNotes * 20 * updatesPerFrame + 320;
#endif
#if defined(VERSION_SH)
persistentMem = DOUBLE_SIZE_ON_64_BIT(preset->persistentSeqMem + preset->persistentBankMem + preset->unk18 + preset->unkMem28 + 0x10);
temporaryMem = DOUBLE_SIZE_ON_64_BIT(preset->temporarySeqMem + preset->temporaryBankMem + preset->unk24 + preset->unkMem2C + 0x10);
#elif defined(VERSION_EU)
persistentMem = DOUBLE_SIZE_ON_64_BIT(preset->persistentSeqMem + preset->persistentBankMem);
temporaryMem = DOUBLE_SIZE_ON_64_BIT(preset->temporarySeqMem + preset->temporaryBankMem);
#else
persistentMem = DOUBLE_SIZE_ON_64_BIT(preset->persistentBankMem + preset->persistentSeqMem);
temporaryMem = DOUBLE_SIZE_ON_64_BIT(preset->temporaryBankMem + preset->temporarySeqMem);
#endif
totalMem = persistentMem + temporaryMem;
wantMisc = gAudioSessionPool.size - totalMem - 0x100;
sSessionPoolSplit.wantSeq = wantMisc;
sSessionPoolSplit.wantCustom = totalMem;
session_pools_init(&sSessionPoolSplit);
sSeqAndBankPoolSplit.wantPersistent = persistentMem;
sSeqAndBankPoolSplit.wantTemporary = temporaryMem;
seq_and_bank_pool_init(&sSeqAndBankPoolSplit);
sPersistentCommonPoolSplit.wantSeq = DOUBLE_SIZE_ON_64_BIT(preset->persistentSeqMem);
sPersistentCommonPoolSplit.wantBank = DOUBLE_SIZE_ON_64_BIT(preset->persistentBankMem);
#ifdef VERSION_SH
sPersistentCommonPoolSplit.wantUnused = preset->unk18;
#else
sPersistentCommonPoolSplit.wantUnused = 0;
#endif
persistent_pools_init(&sPersistentCommonPoolSplit);
sTemporaryCommonPoolSplit.wantSeq = DOUBLE_SIZE_ON_64_BIT(preset->temporarySeqMem);
sTemporaryCommonPoolSplit.wantBank = DOUBLE_SIZE_ON_64_BIT(preset->temporaryBankMem);
#ifdef VERSION_SH
sTemporaryCommonPoolSplit.wantUnused = preset->unk24;
#else
sTemporaryCommonPoolSplit.wantUnused = 0;
#endif
temporary_pools_init(&sTemporaryCommonPoolSplit);
#ifdef VERSION_SH
unk_pools_init(preset->unkMem28, preset->unkMem2C);
#endif
reset_bank_and_seq_load_status();
#if defined(VERSION_JP) || defined(VERSION_US)
for (j = 0; j < 2; j++) {
gAudioCmdBuffers[j] = soundAlloc(&gNotesAndBuffersPool, gMaxAudioCmds * sizeof(u64));
}
#endif
gNotes = soundAlloc(&gNotesAndBuffersPool, gMaxSimultaneousNotes * sizeof(struct Note));
note_init_all();
init_note_free_list();
#if defined(VERSION_EU) || defined(VERSION_SH)
gNoteSubsEu = soundAlloc(&gNotesAndBuffersPool, (gAudioBufferParameters.updatesPerFrame * gMaxSimultaneousNotes) * sizeof(struct NoteSubEu));
for (j = 0; j != 2; j++) {
gAudioCmdBuffers[j] = soundAlloc(&gNotesAndBuffersPool, gMaxAudioCmds * sizeof(u64));
}
for (j = 0; j < 4; j++) {
gSynthesisReverbs[j].useReverb = 0;
}
gNumSynthesisReverbs = preset->numReverbs;
for (j = 0; j < gNumSynthesisReverbs; j++) {
reverb = &gSynthesisReverbs[j];
reverbSettings = &preset->reverbSettings[j];
#ifdef VERSION_SH
reverb->downsampleRate = reverbSettings->downsampleRate;
reverb->windowSize = reverbSettings->windowSize * 64;
reverb->windowSize /= reverb->downsampleRate;
#else
reverb->windowSize = reverbSettings->windowSize * 64;
reverb->downsampleRate = reverbSettings->downsampleRate;
#endif
reverb->reverbGain = reverbSettings->gain;
#ifdef VERSION_SH
reverb->panRight = reverbSettings->unk4;
reverb->panLeft = reverbSettings->unk6;
reverb->unk5 = reverbSettings->unk8;
reverb->unk08 = reverbSettings->unkA;
#endif
reverb->useReverb = 8;
reverb->ringBuffer.left = soundAlloc(&gNotesAndBuffersPool, reverb->windowSize * 2);
reverb->ringBuffer.right = soundAlloc(&gNotesAndBuffersPool, reverb->windowSize * 2);
reverb->nextRingBufferPos = 0;
reverb->unkC = 0;
reverb->curFrame = 0;
reverb->bufSizePerChannel = reverb->windowSize;
reverb->framesLeftToIgnore = 2;
#ifdef VERSION_SH
reverb->resampleFlags = A_INIT;
#endif
if (reverb->downsampleRate != 1) {
#ifndef VERSION_SH
reverb->resampleFlags = A_INIT;
#endif
reverb->resampleRate = 0x8000 / reverb->downsampleRate;
reverb->resampleStateLeft = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
reverb->resampleStateRight = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
reverb->unk24 = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
reverb->unk28 = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
for (i = 0; i < gAudioBufferParameters.updatesPerFrame; i++) {
mem = soundAlloc(&gNotesAndBuffersPool, DEFAULT_LEN_2CH);
reverb->items[0][i].toDownsampleLeft = mem;
reverb->items[0][i].toDownsampleRight = mem + DEFAULT_LEN_1CH / sizeof(s16);
mem = soundAlloc(&gNotesAndBuffersPool, DEFAULT_LEN_2CH);
reverb->items[1][i].toDownsampleLeft = mem;
reverb->items[1][i].toDownsampleRight = mem + DEFAULT_LEN_1CH / sizeof(s16);
}
}
#ifdef VERSION_SH
if (reverbSettings->unkC != 0) {
reverb->unk108 = sound_alloc_uninitialized(&gNotesAndBuffersPool, 16 * sizeof(s16));
reverb->unk100 = sound_alloc_uninitialized(&gNotesAndBuffersPool, 8 * sizeof(s16));
func_sh_802F0DE8(reverb->unk100, reverbSettings->unkC);
} else {
reverb->unk100 = NULL;
}
if (reverbSettings->unkE != 0) {
reverb->unk10C = sound_alloc_uninitialized(&gNotesAndBuffersPool, 16 * sizeof(s16));
reverb->unk104 = sound_alloc_uninitialized(&gNotesAndBuffersPool, 8 * sizeof(s16));
func_sh_802F0DE8(reverb->unk104, reverbSettings->unkE);
} else {
reverb->unk104 = NULL;
}
#endif
}
#else
if (reverbWindowSize == 0) {
gSynthesisReverb.useReverb = 0;
} else {
gSynthesisReverb.useReverb = 8;
gSynthesisReverb.ringBuffer.left = soundAlloc(&gNotesAndBuffersPool, reverbWindowSize * 2);
gSynthesisReverb.ringBuffer.right = soundAlloc(&gNotesAndBuffersPool, reverbWindowSize * 2);
gSynthesisReverb.nextRingBufferPos = 0;
gSynthesisReverb.unkC = 0;
gSynthesisReverb.curFrame = 0;
gSynthesisReverb.bufSizePerChannel = reverbWindowSize;
gSynthesisReverb.reverbGain = preset->reverbGain;
gSynthesisReverb.framesLeftToIgnore = 2;
if (gReverbDownsampleRate != 1) {
gSynthesisReverb.resampleFlags = A_INIT;
gSynthesisReverb.resampleRate = 0x8000 / gReverbDownsampleRate;
gSynthesisReverb.resampleStateLeft = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
gSynthesisReverb.resampleStateRight = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
gSynthesisReverb.unk24 = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
gSynthesisReverb.unk28 = soundAlloc(&gNotesAndBuffersPool, 16 * sizeof(s16));
for (i = 0; i < gAudioUpdatesPerFrame; i++) {
mem = soundAlloc(&gNotesAndBuffersPool, DEFAULT_LEN_2CH);
gSynthesisReverb.items[0][i].toDownsampleLeft = mem;
gSynthesisReverb.items[0][i].toDownsampleRight = mem + DEFAULT_LEN_1CH / sizeof(s16);
mem = soundAlloc(&gNotesAndBuffersPool, DEFAULT_LEN_2CH);
gSynthesisReverb.items[1][i].toDownsampleLeft = mem;
gSynthesisReverb.items[1][i].toDownsampleRight = mem + DEFAULT_LEN_1CH / sizeof(s16);
}
}
}
#endif
init_sample_dma_buffers(gMaxSimultaneousNotes);
#if defined(VERSION_EU)
build_vol_rampings_table(0, gAudioBufferParameters.samplesPerUpdate);
#endif
#ifdef VERSION_SH
D_SH_8034F68C = 0;
D_SH_803479B4 = 4096;
#endif
osWritebackDCacheAll();
#if defined(VERSION_JP) || defined(VERSION_US)
if (gAudioLoadLock != AUDIO_LOCK_UNINITIALIZED) {
gAudioLoadLock = AUDIO_LOCK_NOT_LOADING;
}
#endif
}
#ifdef VERSION_SH
void *unk_pool1_lookup(s32 poolIdx, s32 id) {
s32 i;
for (i = 0; i < gUnkPool1.pool.numAllocatedEntries; i++) {
if (gUnkPool1.entries[i].poolIndex == poolIdx && gUnkPool1.entries[i].id == id) {
return gUnkPool1.entries[i].ptr;
}
}
return NULL;
}
void *unk_pool1_alloc(s32 poolIndex, s32 arg1, u32 size) {
void *ret;
s32 pos;
pos = gUnkPool1.pool.numAllocatedEntries;
ret = sound_alloc_uninitialized(&gUnkPool1.pool, size);
gUnkPool1.entries[pos].ptr = ret;
if (ret == NULL) {
return NULL;
}
gUnkPool1.entries[pos].poolIndex = poolIndex;
gUnkPool1.entries[pos].id = arg1;
gUnkPool1.entries[pos].size = size;
#ifdef AVOID_UB
//! @bug UB: missing return. "ret" is in v0 at this point, but doing an
// explicit return uses an additional register.
return ret;
#endif
}
u8 *func_sh_802f1d40(u32 size, s32 bank, u8 *arg2, s8 medium) {
struct UnkEntry *ret;
ret = func_sh_802f1ec4(size);
if (ret != NULL) {
ret->bankId = bank;
ret->dstAddr = arg2;
ret->medium = medium;
return ret->srcAddr;
}
return NULL;
}
u8 *func_sh_802f1d90(u32 size, s32 bank, u8 *arg2, s8 medium) {
struct UnkEntry *ret;
ret = unk_pool2_alloc(size);
if (ret != NULL) {
ret->bankId = bank;
ret->dstAddr = arg2;
ret->medium = medium;
return ret->srcAddr;
}
return NULL;
}
u8 *func_sh_802f1de0(u32 size, s32 bank, u8 *arg2, s8 medium) { // duplicated function?
struct UnkEntry *ret;
ret = unk_pool2_alloc(size);
if (ret != NULL) {
ret->bankId = bank;
ret->dstAddr = arg2;
ret->medium = medium;
return ret->srcAddr;
}
return NULL;
}
void unk_pools_init(u32 size1, u32 size2) {
void *mem;
mem = sound_alloc_uninitialized(&gPersistentCommonPool, size1);
if (mem == NULL) {
gUnkPool2.pool.size = 0;
} else {
sound_alloc_pool_init(&gUnkPool2.pool, mem, size1);
}
mem = sound_alloc_uninitialized(&gTemporaryCommonPool, size2);
if (mem == NULL) {
gUnkPool3.pool.size = 0;
} else {
sound_alloc_pool_init(&gUnkPool3.pool, mem, size2);
}
gUnkPool2.numEntries = 0;
gUnkPool3.numEntries = 0;
}
struct UnkEntry *func_sh_802f1ec4(u32 size) {
u8 *temp_s2;
u8 *phi_s3;
u8 *memLocation;
u8 *cur;
s32 i;
s32 chosenIndex;
struct UnkStructSH8034EC88 *unkStruct;
struct UnkPool *pool = &gUnkPool3;
u8 *itemStart;
u8 *itemEnd;
phi_s3 = pool->pool.cur;
memLocation = sound_alloc_uninitialized(&pool->pool, size);
if (memLocation == NULL) {
cur = pool->pool.cur;
pool->pool.cur = pool->pool.start;
memLocation = sound_alloc_uninitialized(&pool->pool, size);
if (memLocation == NULL) {
pool->pool.cur = cur;
return NULL;
}
phi_s3 = pool->pool.start;
}
temp_s2 = pool->pool.cur;
chosenIndex = -1;
for (i = 0; i < D_SH_8034F68C; i++) {
unkStruct = &D_SH_8034EC88[i];
if (unkStruct->isFree == FALSE) {
itemStart = unkStruct->ramAddr;
itemEnd = unkStruct->ramAddr + unkStruct->sample->size - 1;
if (itemEnd < phi_s3 && itemStart < phi_s3) {
continue;
}
if (itemEnd >= temp_s2 && itemStart >= temp_s2) {
continue;
}
unkStruct->isFree = TRUE;
}
}
for (i = 0; i < pool->numEntries; i++) {
if (pool->entries[i].used == FALSE) {
continue;
}
itemStart = pool->entries[i].srcAddr;
itemEnd = itemStart + pool->entries[i].size - 1;
if (itemEnd < phi_s3 && itemStart < phi_s3) {
continue;
}
if (itemEnd >= temp_s2 && itemStart >= temp_s2) {
continue;
}
func_sh_802f2158(&pool->entries[i]);
if (chosenIndex == -1) {
chosenIndex = i;
}
}
if (chosenIndex == -1) {
chosenIndex = pool->numEntries++;
}
pool->entries[chosenIndex].used = TRUE;
pool->entries[chosenIndex].srcAddr = memLocation;
pool->entries[chosenIndex].size = size;
return &pool->entries[chosenIndex];
}
void func_sh_802f2158(struct UnkEntry *entry) {
s32 idx;
s32 seqCount;
s32 bankId1;
s32 bankId2;
s32 instId;
s32 drumId;
struct Drum *drum;
struct Instrument *inst;
seqCount = gAlCtlHeader->seqCount;
for (idx = 0; idx < seqCount; idx++) {
bankId1 = gCtlEntries[idx].bankId1;
bankId2 = gCtlEntries[idx].bankId2;
if ((bankId1 != 0xff && entry->bankId == bankId1) || (bankId2 != 0xff && entry->bankId == bankId2) || entry->bankId == 0) {
if (get_bank_or_seq(1, 2, idx) != NULL) {
if (IS_BANK_LOAD_COMPLETE(idx) != FALSE) {
for (instId = 0; instId < gCtlEntries[idx].numInstruments; instId++) {
inst = get_instrument_inner(idx, instId);
if (inst != NULL) {
if (inst->normalRangeLo != 0) {
func_sh_802F2320(entry, inst->lowNotesSound.sample);
}
if (inst->normalRangeHi != 127) {
func_sh_802F2320(entry, inst->highNotesSound.sample);
}
func_sh_802F2320(entry, inst->normalNotesSound.sample);
}
}
for (drumId = 0; drumId < gCtlEntries[idx].numDrums; drumId++) {
drum = get_drum(idx, drumId);
if (drum != NULL) {
func_sh_802F2320(entry, drum->sound.sample);
}
}
}
}
}
}
}
void func_sh_802F2320(struct UnkEntry *entry, struct AudioBankSample *sample) {
if (sample != NULL && sample->sampleAddr == entry->srcAddr) {
sample->sampleAddr = entry->dstAddr;
sample->medium = entry->medium;
}
}
struct UnkEntry *unk_pool2_alloc(u32 size) {
void *data;
struct UnkEntry *ret;
s32 *numEntries = &gUnkPool2.numEntries;
data = sound_alloc_uninitialized(&gUnkPool2.pool, size);
if (data == NULL) {
return NULL;
}
ret = &gUnkPool2.entries[*numEntries];
ret->used = TRUE;
ret->srcAddr = data;
ret->size = size;
(*numEntries)++;
return ret;
}
void func_sh_802f23ec(void) {
s32 i;
s32 idx;
s32 seqCount;
s32 bankId1;
s32 bankId2;
s32 instId;
s32 drumId;
struct Drum *drum;
struct Instrument *inst;
UNUSED s32 pad;
struct UnkEntry *entry; //! @bug: not initialized but nevertheless used
seqCount = gAlCtlHeader->seqCount;
for (idx = 0; idx < seqCount; idx++) {
bankId1 = gCtlEntries[idx].bankId1;
bankId2 = gCtlEntries[idx].bankId2;
if ((bankId1 != 0xffu && entry->bankId == bankId1) || (bankId2 != 0xff && entry->bankId == bankId2) || entry->bankId == 0) {
if (get_bank_or_seq(1, 3, idx) != NULL) {
if (IS_BANK_LOAD_COMPLETE(idx) != FALSE) {
for (i = 0; i < gUnkPool2.numEntries; i++) {
entry = &gUnkPool2.entries[i];
for (instId = 0; instId < gCtlEntries[idx].numInstruments; instId++) {
inst = get_instrument_inner(idx, instId);
if (inst != NULL) {
if (inst->normalRangeLo != 0) {
func_sh_802F2320(entry, inst->lowNotesSound.sample);
}
if (inst->normalRangeHi != 127) {
func_sh_802F2320(entry, inst->highNotesSound.sample);
}
func_sh_802F2320(entry, inst->normalNotesSound.sample);
}
}
for (drumId = 0; drumId < gCtlEntries[idx].numDrums; drumId++) {
drum = get_drum(idx, drumId);
if (drum != NULL) {
func_sh_802F2320(entry, drum->sound.sample);
}
}
}
}
}
}
}
}
#endif
#ifdef VERSION_EU
u8 audioString22[] = "SFrame Sample %d %d %d\n";
u8 audioString23[] = "AHPBASE %x\n";
u8 audioString24[] = "AHPCUR %x\n";
u8 audioString25[] = "HeapTop %x\n";
u8 audioString26[] = "SynoutRate %d / %d \n";
u8 audioString27[] = "FXSIZE %d\n";
u8 audioString28[] = "FXCOMP %d\n";
u8 audioString29[] = "FXDOWN %d\n";
u8 audioString30[] = "WaveCacheLen: %d\n";
u8 audioString31[] = "SpecChange Finished\n";
#endif