1
Fork 0
mirror of https://github.com/redstrate/Novus.git synced 2025-04-26 13:47:46 +00:00
novus/parts/mdl/mdlpart.cpp

513 lines
20 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: 2023 Joshua Goins <josh@redstrate.com>
// SPDX-License-Identifier: GPL-3.0-or-later
#include "mdlpart.h"
#include "glm/gtx/transform.hpp"
2023-07-07 16:01:39 -04:00
#include <QJsonArray>
#include <QJsonDocument>
#include <QJsonObject>
#include <QResizeEvent>
#include <QVBoxLayout>
#include <QVulkanInstance>
#include <QVulkanWindow>
#include <cmath>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtc/type_ptr.inl>
#include "filecache.h"
2023-09-23 14:08:41 -04:00
#include "tiny_gltf.h"
#include "vulkanwindow.h"
2023-10-12 23:45:34 -04:00
MDLPart::MDLPart(GameData *data, FileCache &cache)
: data(data)
, cache(cache)
{
auto viewportLayout = new QVBoxLayout();
viewportLayout->setContentsMargins(0, 0, 0, 0);
setLayout(viewportLayout);
pbd = physis_parse_pbd(physis_gamedata_extract_file(data, "chara/xls/bonedeformer/human.pbd"));
renderer = new Renderer();
auto inst = new QVulkanInstance();
inst->setVkInstance(renderer->instance);
inst->setFlags(QVulkanInstance::Flag::NoDebugOutputRedirect);
inst->create();
vkWindow = new VulkanWindow(this, renderer, inst);
vkWindow->setVulkanInstance(inst);
auto widget = QWidget::createWindowContainer(vkWindow);
viewportLayout->addWidget(widget);
connect(this, &MDLPart::modelChanged, this, &MDLPart::reloadRenderer);
connect(this, &MDLPart::skeletonChanged, this, &MDLPart::reloadBoneData);
}
2023-10-12 23:45:34 -04:00
void MDLPart::exportModel(const QString &fileName)
{
2023-09-23 14:08:41 -04:00
const int selectedModel = 0;
const int selectedLod = 0;
2023-10-12 23:45:34 -04:00
const physis_MDL &model = models[selectedModel].model;
const physis_LOD &lod = model.lods[selectedLod];
2023-09-23 14:08:41 -04:00
tinygltf::Model gltfModel;
gltfModel.asset.generator = "Novus";
// TODO: just write the code better! dummy!!
gltfModel.nodes.reserve(1 + model.num_affected_bones + lod.num_parts);
2023-10-12 23:45:34 -04:00
auto &gltfSkeletonNode = gltfModel.nodes.emplace_back();
2023-09-23 14:08:41 -04:00
gltfSkeletonNode.name = skeleton->root_bone->name;
2023-09-23 14:08:41 -04:00
for (int i = 0; i < model.num_affected_bones; i++) {
2023-10-12 23:45:34 -04:00
auto &node = gltfModel.nodes.emplace_back();
2023-09-23 14:08:41 -04:00
node.name = model.affected_bone_names[i];
int real_bone_id = 0;
for (int k = 0; k < skeleton->num_bones; k++) {
2023-09-23 14:08:41 -04:00
if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
2023-10-12 23:45:34 -04:00
auto &real_bone = skeleton->bones[real_bone_id];
2023-09-23 14:08:41 -04:00
node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]};
node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]};
node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]};
}
// setup parenting
2023-09-23 14:08:41 -04:00
for (int i = 0; i < model.num_affected_bones; i++) {
int real_bone_id = 0;
for (int k = 0; k < skeleton->num_bones; k++) {
2023-09-23 14:08:41 -04:00
if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
2023-10-12 23:45:34 -04:00
auto &real_bone = skeleton->bones[real_bone_id];
if (real_bone.parent_bone != nullptr) {
bool found = false;
2023-09-23 14:08:41 -04:00
for (int k = 0; k < model.num_affected_bones; k++) {
if (strcmp(model.affected_bone_names[k], real_bone.parent_bone->name) == 0) {
gltfModel.nodes[k + 1].children.push_back(i + 1); // +1 for the skeleton node taking up the first index
found = true;
}
}
// Find the next closest bone that isn't a direct descendant
// of n_root, but won't have a parent anyway
if (!found) {
gltfSkeletonNode.children.push_back(i + 1);
}
2023-09-23 14:08:41 -04:00
} else {
gltfSkeletonNode.children.push_back(i + 1);
}
}
2023-10-12 23:45:34 -04:00
auto &gltfSkin = gltfModel.skins.emplace_back();
2023-09-23 14:08:41 -04:00
gltfSkin.name = gltfSkeletonNode.name;
gltfSkin.skeleton = 0;
2023-09-23 14:08:41 -04:00
for (int i = 1; i < gltfModel.nodes.size(); i++) {
gltfSkin.joints.push_back(i);
}
2023-09-23 14:08:41 -04:00
// Inverse bind matrices
{
gltfSkin.inverseBindMatrices = gltfModel.accessors.size();
2023-10-12 23:45:34 -04:00
auto &inverseAccessor = gltfModel.accessors.emplace_back();
2023-09-23 14:08:41 -04:00
inverseAccessor.bufferView = gltfModel.bufferViews.size();
inverseAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
inverseAccessor.count = model.num_affected_bones;
inverseAccessor.type = TINYGLTF_TYPE_MAT4;
2023-10-12 23:45:34 -04:00
auto &inverseBufferView = gltfModel.bufferViews.emplace_back();
2023-09-23 14:08:41 -04:00
inverseBufferView.buffer = gltfModel.buffers.size();
2023-10-12 23:45:34 -04:00
auto &inverseBuffer = gltfModel.buffers.emplace_back();
2023-09-23 14:08:41 -04:00
for (int i = 0; i < model.num_affected_bones; i++) {
int real_bone_id = 0;
for (int k = 0; k < skeleton->num_bones; k++) {
if (strcmp(skeleton->bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
2023-10-12 23:45:34 -04:00
auto &real_bone = skeleton->bones[real_bone_id];
2023-09-23 14:08:41 -04:00
auto inverseMatrix = boneData[real_bone.index].inversePose;
2023-10-12 23:45:34 -04:00
auto inverseMatrixCPtr = reinterpret_cast<uint8_t *>(glm::value_ptr(inverseMatrix));
2023-09-23 14:08:41 -04:00
inverseBuffer.data.insert(inverseBuffer.data.end(), inverseMatrixCPtr, inverseMatrixCPtr + sizeof(float) * 16);
}
2023-09-23 14:08:41 -04:00
inverseBufferView.byteLength = inverseBuffer.data.size();
}
2023-09-23 14:08:41 -04:00
for (int i = 0; i < lod.num_parts; i++) {
gltfSkeletonNode.children.push_back(gltfModel.nodes.size());
2023-10-12 23:45:34 -04:00
auto &gltfNode = gltfModel.nodes.emplace_back();
gltfNode.name = models[0].name.toStdString() + " Part " + std::to_string(i) + ".0";
2023-09-23 14:08:41 -04:00
gltfNode.skin = 0;
gltfNode.mesh = gltfModel.meshes.size();
2023-10-12 23:45:34 -04:00
auto &gltfMesh = gltfModel.meshes.emplace_back();
2023-09-23 14:08:41 -04:00
gltfMesh.name = gltfNode.name + " Mesh Attribute";
2023-09-23 14:08:41 -04:00
2023-10-12 23:45:34 -04:00
auto &gltfPrimitive = gltfMesh.primitives.emplace_back();
2023-09-23 14:08:41 -04:00
gltfPrimitive.attributes["POSITION"] = gltfModel.accessors.size();
gltfPrimitive.attributes["TEXCOORD_0"] = gltfModel.accessors.size() + 1;
gltfPrimitive.attributes["TEXCOORD_1"] = gltfModel.accessors.size() + 2;
gltfPrimitive.attributes["NORMAL"] = gltfModel.accessors.size() + 3;
gltfPrimitive.attributes["COLOR_0"] = gltfModel.accessors.size() + 6;
gltfPrimitive.attributes["WEIGHTS_0"] = gltfModel.accessors.size() + 7;
gltfPrimitive.attributes["JOINTS_0"] = gltfModel.accessors.size() + 8;
2023-09-23 14:08:41 -04:00
gltfPrimitive.mode = TINYGLTF_MODE_TRIANGLES;
// Vertices
{
2023-10-12 23:45:34 -04:00
auto &positionAccessor = gltfModel.accessors.emplace_back();
2023-09-23 14:08:41 -04:00
positionAccessor.bufferView = gltfModel.bufferViews.size();
positionAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
positionAccessor.count = lod.parts[i].num_vertices;
positionAccessor.type = TINYGLTF_TYPE_VEC3;
auto &uv0Accessor = gltfModel.accessors.emplace_back();
uv0Accessor.bufferView = gltfModel.bufferViews.size();
uv0Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
uv0Accessor.count = lod.parts[i].num_vertices;
uv0Accessor.type = TINYGLTF_TYPE_VEC2;
uv0Accessor.byteOffset = offsetof(Vertex, uv0);
auto &uv1Accessor = gltfModel.accessors.emplace_back();
uv1Accessor.bufferView = gltfModel.bufferViews.size();
uv1Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
uv1Accessor.count = lod.parts[i].num_vertices;
uv1Accessor.type = TINYGLTF_TYPE_VEC2;
uv1Accessor.byteOffset = offsetof(Vertex, uv1);
2023-09-23 14:08:41 -04:00
2023-10-12 23:45:34 -04:00
auto &normalAccessor = gltfModel.accessors.emplace_back();
2023-09-23 14:08:41 -04:00
normalAccessor.bufferView = gltfModel.bufferViews.size();
normalAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
normalAccessor.count = lod.parts[i].num_vertices;
normalAccessor.type = TINYGLTF_TYPE_VEC3;
normalAccessor.byteOffset = offsetof(Vertex, normal);
auto &tangent1Accessor = gltfModel.accessors.emplace_back();
tangent1Accessor.bufferView = gltfModel.bufferViews.size();
tangent1Accessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE;
tangent1Accessor.count = lod.parts[i].num_vertices;
tangent1Accessor.type = TINYGLTF_TYPE_VEC4;
tangent1Accessor.byteOffset = offsetof(Vertex, tangent1);
auto &tangent2Accessor = gltfModel.accessors.emplace_back();
tangent2Accessor.bufferView = gltfModel.bufferViews.size();
tangent2Accessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE;
tangent2Accessor.count = lod.parts[i].num_vertices;
tangent2Accessor.type = TINYGLTF_TYPE_VEC4;
tangent2Accessor.byteOffset = offsetof(Vertex, tangent2);
auto &colorAccessor = gltfModel.accessors.emplace_back();
colorAccessor.bufferView = gltfModel.bufferViews.size();
colorAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
colorAccessor.count = lod.parts[i].num_vertices;
colorAccessor.type = TINYGLTF_TYPE_VEC4;
colorAccessor.byteOffset = offsetof(Vertex, color);
2023-10-12 23:45:34 -04:00
auto &boneWeightAccessor = gltfModel.accessors.emplace_back();
2023-09-23 14:08:41 -04:00
boneWeightAccessor.bufferView = gltfModel.bufferViews.size();
boneWeightAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
boneWeightAccessor.count = lod.parts[i].num_vertices;
boneWeightAccessor.type = TINYGLTF_TYPE_VEC4;
boneWeightAccessor.byteOffset = offsetof(Vertex, bone_weight);
2023-10-12 23:45:34 -04:00
auto &boneIdAccessor = gltfModel.accessors.emplace_back();
2023-09-23 14:08:41 -04:00
boneIdAccessor.bufferView = gltfModel.bufferViews.size();
boneIdAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE;
2023-09-23 14:08:41 -04:00
boneIdAccessor.count = lod.parts[i].num_vertices;
boneIdAccessor.type = TINYGLTF_TYPE_VEC4;
boneIdAccessor.byteOffset = offsetof(Vertex, bone_id);
2023-10-12 23:45:34 -04:00
auto &vertexBufferView = gltfModel.bufferViews.emplace_back();
2023-09-23 14:08:41 -04:00
vertexBufferView.buffer = gltfModel.buffers.size();
vertexBufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
2023-10-12 23:45:34 -04:00
auto &vertexBuffer = gltfModel.buffers.emplace_back();
2023-09-23 14:08:41 -04:00
vertexBuffer.data.resize(lod.parts[i].num_vertices * sizeof(Vertex));
memcpy(vertexBuffer.data.data(), lod.parts[i].vertices, vertexBuffer.data.size());
vertexBufferView.byteLength = vertexBuffer.data.size();
vertexBufferView.byteStride = sizeof(Vertex);
}
2023-09-23 14:08:41 -04:00
// Indices
{
gltfPrimitive.indices = gltfModel.accessors.size();
2023-10-12 23:45:34 -04:00
auto &indexAccessor = gltfModel.accessors.emplace_back();
2023-09-23 14:08:41 -04:00
indexAccessor.bufferView = gltfModel.bufferViews.size();
indexAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT;
indexAccessor.count = lod.parts[i].num_indices;
indexAccessor.type = TINYGLTF_TYPE_SCALAR;
2023-10-12 23:45:34 -04:00
auto &indexBufferView = gltfModel.bufferViews.emplace_back();
2023-09-23 14:08:41 -04:00
indexBufferView.buffer = gltfModel.buffers.size();
indexBufferView.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER;
2023-10-12 23:45:34 -04:00
auto &indexBuffer = gltfModel.buffers.emplace_back();
2023-09-23 14:08:41 -04:00
indexBuffer.data.resize(lod.parts[i].num_indices * sizeof(uint16_t));
memcpy(indexBuffer.data.data(), lod.parts[i].indices, indexBuffer.data.size());
indexBufferView.byteLength = indexBuffer.data.size();
indexBufferView.byteStride = sizeof(uint16_t);
}
}
auto &scene = gltfModel.scenes.emplace_back();
scene.name = models[0].name.toStdString();
scene.nodes = {0};
2023-09-23 14:08:41 -04:00
tinygltf::TinyGLTF loader;
loader.WriteGltfSceneToFile(&gltfModel, fileName.toStdString(), true, true, false, true);
}
RenderModel &MDLPart::getModel(const int index)
{
return models[index];
}
void MDLPart::reloadModel(const int index)
{
renderer->reloadModel(models[index], 0);
Q_EMIT modelChanged();
}
2023-10-12 23:45:34 -04:00
void MDLPart::clear()
{
models.clear();
Q_EMIT modelChanged();
}
void MDLPart::addModel(physis_MDL mdl, const QString &name, std::vector<physis_Material> materials, int lod, uint16_t fromBodyId, uint16_t toBodyId)
{
qDebug() << "Adding model to MDLPart";
auto model = renderer->addModel(mdl, lod);
model.name = name;
model.from_body_id = fromBodyId;
model.to_body_id = toBodyId;
2023-10-12 23:45:34 -04:00
std::transform(materials.begin(), materials.end(), std::back_inserter(model.materials), [this](const physis_Material &mat) {
return createMaterial(mat);
});
if (materials.empty()) {
model.materials.push_back(createMaterial(physis_Material{}));
}
models.push_back(model);
Q_EMIT modelChanged();
}
2023-10-12 23:45:34 -04:00
void MDLPart::setSkeleton(physis_Skeleton newSkeleton)
{
skeleton = std::make_unique<physis_Skeleton>(newSkeleton);
firstTimeSkeletonDataCalculated = false;
Q_EMIT skeletonChanged();
}
2023-10-12 23:45:34 -04:00
void MDLPart::clearSkeleton()
{
skeleton.reset();
firstTimeSkeletonDataCalculated = false;
Q_EMIT skeletonChanged();
}
2023-10-12 23:45:34 -04:00
void MDLPart::reloadRenderer()
{
reloadBoneData();
vkWindow->models = models;
}
2023-10-12 23:45:34 -04:00
void MDLPart::reloadBoneData()
{
if (skeleton) {
if (!firstTimeSkeletonDataCalculated) {
2023-07-07 16:01:39 -04:00
if (boneData.empty()) {
boneData.resize(skeleton->num_bones);
}
calculateBoneInversePose(*skeleton, *skeleton->root_bone, nullptr);
2023-10-12 23:45:34 -04:00
for (auto &bone : boneData) {
bone.inversePose = glm::inverse(bone.inversePose);
}
firstTimeSkeletonDataCalculated = true;
}
// update data
calculateBone(*skeleton, *skeleton->root_bone, nullptr);
2023-10-12 23:45:34 -04:00
for (auto &model : models) {
// we want to map the actual affected bones to bone ids
std::map<int, int> boneMapping;
for (int i = 0; i < model.model.num_affected_bones; i++) {
for (int k = 0; k < skeleton->num_bones; k++) {
2023-10-12 23:45:34 -04:00
if (std::string_view{skeleton->bones[k].name} == std::string_view{model.model.affected_bone_names[i]}) {
boneMapping[i] = k;
}
}
}
std::vector<glm::mat4> deformBones(model.model.num_affected_bones);
for (int i = 0; i < model.model.num_affected_bones; i++) {
deformBones[i] = glm::mat4(1.0f);
}
// get deform matrices
auto deform = physis_pbd_get_deform_matrix(pbd, model.from_body_id, model.to_body_id);
if (deform.num_bones != 0) {
for (int i = 0; i < deform.num_bones; i++) {
auto deformBone = deform.bones[i];
for (int k = 0; k < model.model.num_affected_bones; k++) {
if (std::string_view{model.model.affected_bone_names[k]} == std::string_view{deformBone.name}) {
deformBones[k] = glm::mat4{deformBone.deform[0],
deformBone.deform[1],
deformBone.deform[2],
deformBone.deform[3],
deformBone.deform[4],
deformBone.deform[5],
deformBone.deform[6],
deformBone.deform[7],
deformBone.deform[8],
deformBone.deform[9],
deformBone.deform[10],
deformBone.deform[11],
0.0f,
0.0f,
0.0f,
1.0f};
}
}
}
}
for (int i = 0; i < model.model.num_affected_bones; i++) {
const int originalBoneId = boneMapping[i];
model.boneData[i] = boneData[originalBoneId].localTransform * deformBones[i] * boneData[originalBoneId].inversePose;
}
}
}
}
2023-10-12 23:45:34 -04:00
RenderMaterial MDLPart::createMaterial(const physis_Material &material)
{
RenderMaterial newMaterial;
for (int i = 0; i < material.num_textures; i++) {
std::string t = material.textures[i];
if (t.find("skin") != std::string::npos) {
newMaterial.type = MaterialType::Skin;
}
char type = t[t.length() - 5];
switch (type) {
2023-10-12 23:45:34 -04:00
case 'm': {
2023-09-26 00:37:55 -04:00
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
2023-09-26 00:37:55 -04:00
newMaterial.multiTexture = new RenderTexture(tex);
2023-10-12 23:45:34 -04:00
}
case 'd': {
2023-09-26 00:37:55 -04:00
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
2023-09-26 00:37:55 -04:00
newMaterial.diffuseTexture = new RenderTexture(tex);
2023-10-12 23:45:34 -04:00
} break;
case 'n': {
2023-09-26 00:37:55 -04:00
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
2023-09-26 00:37:55 -04:00
newMaterial.normalTexture = new RenderTexture(tex);
2023-10-12 23:45:34 -04:00
} break;
case 's': {
2023-09-26 00:37:55 -04:00
auto texture = physis_texture_parse(cache.lookupFile(QLatin1String(material.textures[i])));
auto tex = renderer->addTexture(texture.width, texture.height, texture.rgba, texture.rgba_size);
2023-09-26 00:37:55 -04:00
newMaterial.specularTexture = new RenderTexture(tex);
2023-10-12 23:45:34 -04:00
} break;
default:
qDebug() << "unhandled type" << type;
break;
}
}
return newMaterial;
}
2023-10-12 23:45:34 -04:00
void MDLPart::calculateBoneInversePose(physis_Skeleton &skeleton, physis_Bone &bone, physis_Bone *parent_bone)
{
const glm::mat4 parentMatrix = parent_bone == nullptr ? glm::mat4(1.0f) : boneData[parent_bone->index].inversePose;
2023-07-07 16:01:39 -04:00
glm::mat4 local = glm::mat4(1.0f);
local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2]));
local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2]));
local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2]));
boneData[bone.index].inversePose = parentMatrix * local;
for (int i = 0; i < skeleton.num_bones; i++) {
2023-10-12 23:45:34 -04:00
if (skeleton.bones[i].parent_bone != nullptr && std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) {
calculateBoneInversePose(skeleton, skeleton.bones[i], &bone);
}
}
}
2023-10-12 23:45:34 -04:00
void MDLPart::calculateBone(physis_Skeleton &skeleton, physis_Bone &bone, const physis_Bone *parent_bone)
{
const glm::mat4 parent_matrix = parent_bone == nullptr ? glm::mat4(1.0f) : (boneData[parent_bone->index].localTransform);
glm::mat4 local = glm::mat4(1.0f);
local = glm::translate(local, glm::vec3(bone.position[0], bone.position[1], bone.position[2]));
local *= glm::mat4_cast(glm::quat(bone.rotation[3], bone.rotation[0], bone.rotation[1], bone.rotation[2]));
local = glm::scale(local, glm::vec3(bone.scale[0], bone.scale[1], bone.scale[2]));
boneData[bone.index].localTransform = parent_matrix * local;
boneData[bone.index].finalTransform = parent_matrix;
2023-07-07 16:01:39 -04:00
for (int i = 0; i < skeleton.num_bones; i++) {
2023-10-12 23:45:34 -04:00
if (skeleton.bones[i].parent_bone != nullptr && std::string_view{skeleton.bones[i].parent_bone->name} == std::string_view{bone.name}) {
calculateBone(skeleton, skeleton.bones[i], &bone);
}
}
}
void MDLPart::removeModel(const physis_MDL &mdl)
{
models.erase(std::remove_if(models.begin(),
models.end(),
[mdl](const RenderModel &other) {
return mdl.lods == other.model.lods;
}),
models.end());
}
#include "moc_mdlpart.cpp"