1
Fork 0
mirror of https://github.com/redstrate/Novus.git synced 2025-04-26 05:37:46 +00:00
novus/parts/mdl/mdlexport.cpp

305 lines
14 KiB
C++
Raw Normal View History

// SPDX-FileCopyrightText: 2023 Joshua Goins <josh@redstrate.com>
// SPDX-License-Identifier: GPL-3.0-or-later
#include "mdlexport.h"
#include <QDebug>
#include <glm/gtc/type_ptr.hpp>
#include "tiny_gltf.h"
void exportModel(const QString &name, const physis_MDL &model, const physis_Skeleton &skeleton, const std::vector<BoneData> &boneData, const QString &fileName)
{
const int selectedLod = 0;
const physis_LOD &lod = model.lods[selectedLod];
tinygltf::Model gltfModel;
gltfModel.asset.generator = "Novus";
// TODO: just write the code better! dummy!!
size_t required_nodes = 1;
required_nodes += model.num_affected_bones;
for (int i = 0; i < lod.num_parts; i++) {
required_nodes += lod.parts[i].num_submeshes;
}
gltfModel.nodes.reserve(required_nodes);
auto &gltfSkeletonNode = gltfModel.nodes.emplace_back();
gltfSkeletonNode.name = skeleton.root_bone->name;
// find needed root bones
std::vector<physis_Bone> root_bones;
// hardcode to n_hara for now
root_bones.push_back(skeleton.bones[1]);
for (uint32_t i = 0; i < root_bones.size(); i++) {
auto &node = gltfModel.nodes.emplace_back();
node.name = root_bones[i].name;
auto &real_bone = root_bones[i];
node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]};
node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]};
node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]};
}
gltfSkeletonNode.children.push_back(1);
2023-12-09 22:35:59 -05:00
for (uint32_t i = 0; i < model.num_affected_bones; i++) {
auto &node = gltfModel.nodes.emplace_back();
node.name = model.affected_bone_names[i];
int real_bone_id = 0;
2023-12-09 22:35:59 -05:00
for (uint32_t k = 0; k < skeleton.num_bones; k++) {
if (strcmp(skeleton.bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
auto &real_bone = skeleton.bones[real_bone_id];
node.translation = {real_bone.position[0], real_bone.position[1], real_bone.position[2]};
node.rotation = {real_bone.rotation[0], real_bone.rotation[1], real_bone.rotation[2], real_bone.rotation[3]};
node.scale = {real_bone.scale[0], real_bone.scale[1], real_bone.scale[2]};
}
// setup parenting
2023-12-09 22:35:59 -05:00
for (uint32_t i = 0; i < model.num_affected_bones; i++) {
int real_bone_id = 0;
2023-12-09 22:35:59 -05:00
for (uint32_t k = 0; k < skeleton.num_bones; k++) {
if (strcmp(skeleton.bones[k].name, model.affected_bone_names[i]) == 0) {
real_bone_id = k;
}
}
auto &real_bone = skeleton.bones[real_bone_id];
if (real_bone.parent_bone != nullptr) {
bool found = false;
2023-12-09 22:35:59 -05:00
for (uint32_t k = 0; k < model.num_affected_bones; k++) {
if (strcmp(model.affected_bone_names[k], real_bone.parent_bone->name) == 0) {
gltfModel.nodes[k + 2].children.push_back(i + 2); // +1 for the skeleton node taking up the first index
found = true;
}
}
// Find the next closest bone that isn't a direct descendant
// of n_root, but won't have a parent anyway
if (!found) {
gltfModel.nodes[1].children.push_back(i + 2);
}
} else {
gltfModel.nodes[1].children.push_back(i + 2);
}
}
auto &gltfSkin = gltfModel.skins.emplace_back();
gltfSkin.name = gltfSkeletonNode.name;
gltfSkin.skeleton = 0;
2023-12-09 22:35:59 -05:00
for (size_t i = 1; i < gltfModel.nodes.size(); i++) {
gltfSkin.joints.push_back(i);
}
// Inverse bind matrices
{
gltfSkin.inverseBindMatrices = gltfModel.accessors.size();
auto &inverseAccessor = gltfModel.accessors.emplace_back();
inverseAccessor.bufferView = gltfModel.bufferViews.size();
inverseAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
inverseAccessor.count = gltfModel.nodes.size() - 1;
inverseAccessor.type = TINYGLTF_TYPE_MAT4;
auto &inverseBufferView = gltfModel.bufferViews.emplace_back();
inverseBufferView.buffer = gltfModel.buffers.size();
auto &inverseBuffer = gltfModel.buffers.emplace_back();
for (uint32_t i = 1; i < gltfModel.nodes.size(); i++) {
int real_bone_id = 0;
2023-12-09 22:35:59 -05:00
for (uint32_t k = 0; k < skeleton.num_bones; k++) {
if (strcmp(skeleton.bones[k].name, gltfModel.nodes[i].name.c_str()) == 0) {
real_bone_id = k;
}
}
auto &real_bone = skeleton.bones[real_bone_id];
auto inverseMatrix = boneData[real_bone.index].inversePose;
auto inverseMatrixCPtr = reinterpret_cast<uint8_t *>(glm::value_ptr(inverseMatrix));
inverseBuffer.data.insert(inverseBuffer.data.end(), inverseMatrixCPtr, inverseMatrixCPtr + sizeof(float) * 16);
}
inverseBufferView.byteLength = inverseBuffer.data.size();
}
int mesh_offset = 0;
2023-12-09 22:35:59 -05:00
for (uint32_t i = 0; i < lod.num_parts; i++) {
auto &part = lod.parts[i];
// Parts above 0 also have an index offset because it's supposed to be all in one buffer.
// We should do that too eventually!
int initial_index_offset = 0;
for (uint32_t j = 0; j < part.num_submeshes; j++) {
gltfSkeletonNode.children.push_back(gltfModel.nodes.size());
auto &gltfNode = gltfModel.nodes.emplace_back();
gltfNode.name = name.toStdString() + " Part " + std::to_string(i) + "." + std::to_string(j);
gltfNode.skin = 0;
gltfNode.mesh = gltfModel.meshes.size();
auto &gltfMesh = gltfModel.meshes.emplace_back();
gltfMesh.name = gltfNode.name + " Mesh Attribute";
auto &gltfPrimitive = gltfMesh.primitives.emplace_back();
if (j == 0) {
initial_index_offset = lod.parts[i].submeshes[j].index_offset;
}
gltfPrimitive.indices = gltfModel.accessors.size();
auto &indexAccessor = gltfModel.accessors.emplace_back();
indexAccessor.name = gltfNode.name + " Index Accessor";
indexAccessor.bufferView = gltfModel.bufferViews.size() + 1;
indexAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_SHORT;
indexAccessor.count = lod.parts[i].submeshes[j].index_count;
indexAccessor.byteOffset = (lod.parts[i].submeshes[j].index_offset - initial_index_offset) * sizeof(uint16_t);
indexAccessor.type = TINYGLTF_TYPE_SCALAR;
gltfPrimitive.mode = TINYGLTF_MODE_TRIANGLES;
}
for (uint32_t j = 0; j < part.num_submeshes; j++) {
auto &gltfPrimitive = gltfModel.meshes[mesh_offset + j].primitives[0];
gltfPrimitive.attributes["POSITION"] = gltfModel.accessors.size();
gltfPrimitive.attributes["TEXCOORD_0"] = gltfModel.accessors.size() + 1;
gltfPrimitive.attributes["TEXCOORD_1"] = gltfModel.accessors.size() + 2;
gltfPrimitive.attributes["NORMAL"] = gltfModel.accessors.size() + 3;
gltfPrimitive.attributes["TANGENT"] = gltfModel.accessors.size() + 4;
gltfPrimitive.attributes["COLOR_0"] = gltfModel.accessors.size() + 5;
gltfPrimitive.attributes["WEIGHTS_0"] = gltfModel.accessors.size() + 6;
gltfPrimitive.attributes["JOINTS_0"] = gltfModel.accessors.size() + 7;
}
mesh_offset += part.num_submeshes;
// Vertices
{
auto &positionAccessor = gltfModel.accessors.emplace_back();
positionAccessor.bufferView = gltfModel.bufferViews.size();
positionAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
positionAccessor.count = lod.parts[i].num_vertices;
positionAccessor.type = TINYGLTF_TYPE_VEC3;
auto &uv0Accessor = gltfModel.accessors.emplace_back();
uv0Accessor.bufferView = gltfModel.bufferViews.size();
uv0Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
uv0Accessor.count = lod.parts[i].num_vertices;
uv0Accessor.type = TINYGLTF_TYPE_VEC2;
uv0Accessor.byteOffset = offsetof(Vertex, uv0);
auto &uv1Accessor = gltfModel.accessors.emplace_back();
uv1Accessor.bufferView = gltfModel.bufferViews.size();
uv1Accessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
uv1Accessor.count = lod.parts[i].num_vertices;
uv1Accessor.type = TINYGLTF_TYPE_VEC2;
uv1Accessor.byteOffset = offsetof(Vertex, uv1);
auto &normalAccessor = gltfModel.accessors.emplace_back();
normalAccessor.bufferView = gltfModel.bufferViews.size();
normalAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
normalAccessor.count = lod.parts[i].num_vertices;
normalAccessor.type = TINYGLTF_TYPE_VEC3;
normalAccessor.byteOffset = offsetof(Vertex, normal);
// We're reusing this spot for tangents (see later post-processing step)
auto &tangentAccessor = gltfModel.accessors.emplace_back();
tangentAccessor.bufferView = gltfModel.bufferViews.size();
tangentAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
tangentAccessor.count = lod.parts[i].num_vertices;
tangentAccessor.type = TINYGLTF_TYPE_VEC4;
tangentAccessor.byteOffset = offsetof(Vertex, bitangent);
auto &colorAccessor = gltfModel.accessors.emplace_back();
colorAccessor.bufferView = gltfModel.bufferViews.size();
colorAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
colorAccessor.count = lod.parts[i].num_vertices;
colorAccessor.type = TINYGLTF_TYPE_VEC4;
colorAccessor.byteOffset = offsetof(Vertex, color);
auto &boneWeightAccessor = gltfModel.accessors.emplace_back();
boneWeightAccessor.bufferView = gltfModel.bufferViews.size();
boneWeightAccessor.componentType = TINYGLTF_COMPONENT_TYPE_FLOAT;
boneWeightAccessor.count = lod.parts[i].num_vertices;
boneWeightAccessor.type = TINYGLTF_TYPE_VEC4;
boneWeightAccessor.byteOffset = offsetof(Vertex, bone_weight);
auto &boneIdAccessor = gltfModel.accessors.emplace_back();
boneIdAccessor.bufferView = gltfModel.bufferViews.size();
boneIdAccessor.componentType = TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE;
boneIdAccessor.count = lod.parts[i].num_vertices;
boneIdAccessor.type = TINYGLTF_TYPE_VEC4;
boneIdAccessor.byteOffset = offsetof(Vertex, bone_id);
auto &vertexBufferView = gltfModel.bufferViews.emplace_back();
vertexBufferView.name = "Part " + std::to_string(i) + " Vertex Buffer View";
vertexBufferView.buffer = gltfModel.buffers.size();
vertexBufferView.target = TINYGLTF_TARGET_ARRAY_BUFFER;
std::vector<Vertex> newVertices;
for (int a = 0; a < lod.parts[i].num_vertices; a++) {
Vertex vertex = lod.parts[i].vertices[a];
// Account for additional root bone
vertex.bone_id[0]++;
vertex.bone_id[1]++;
vertex.bone_id[2]++;
vertex.bone_id[3]++;
// Do the reverse of what we do in importing, because we need to get the tangent from the binormal.
const glm::vec3 normal = glm::vec3(vertex.normal[0], vertex.normal[1], vertex.normal[2]);
const glm::vec4 tangent = glm::vec4(vertex.bitangent[0], vertex.bitangent[1], vertex.bitangent[2], vertex.bitangent[3]);
const glm::vec3 bitangent = glm::cross(glm::vec3(tangent), normal) * tangent.w;
const float handedness = glm::dot(glm::cross(bitangent, glm::vec3(tangent)), normal) > 0 ? 1 : -1;
vertex.bitangent[0] = bitangent.x;
vertex.bitangent[1] = bitangent.y;
vertex.bitangent[2] = bitangent.z;
vertex.bitangent[3] = handedness;
newVertices.push_back(vertex);
}
auto &vertexBuffer = gltfModel.buffers.emplace_back();
vertexBuffer.name = "Part " + std::to_string(i) + " Vertex Buffer";
vertexBuffer.data.resize(lod.parts[i].num_vertices * sizeof(Vertex));
memcpy(vertexBuffer.data.data(), newVertices.data(), vertexBuffer.data.size());
vertexBufferView.byteLength = vertexBuffer.data.size();
vertexBufferView.byteStride = sizeof(Vertex);
}
// Indices
{
auto &indexBufferView = gltfModel.bufferViews.emplace_back();
indexBufferView.name = "Part " + std::to_string(i) + " Index Buffer View";
indexBufferView.buffer = gltfModel.buffers.size();
indexBufferView.target = TINYGLTF_TARGET_ELEMENT_ARRAY_BUFFER;
auto &indexBuffer = gltfModel.buffers.emplace_back();
indexBuffer.name = "Part " + std::to_string(i) + " Index Buffer";
indexBuffer.data.resize(lod.parts[i].num_indices * sizeof(uint16_t));
memcpy(indexBuffer.data.data(), lod.parts[i].indices, indexBuffer.data.size());
indexBufferView.byteLength = indexBuffer.data.size();
}
}
auto &scene = gltfModel.scenes.emplace_back();
scene.name = name.toStdString();
scene.nodes = {0};
tinygltf::TinyGLTF loader;
loader.WriteGltfSceneToFile(&gltfModel, fileName.toStdString(), true, true, false, true);
}